IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v27y2025i2d10.1057_s41278-024-00298-w.html
   My bibliography  Save this article

On improving containership stowage planning from the perspective of an entire voyage

Author

Listed:
  • Chien-Chang Chou

    (National Kaohsiung University of Science and Technology
    Chou’s Science Research Center and Artificial Intelligence Shipping Study Centre)

  • Wen-Shin Shiau

    (National Kaohsiung University of Science and Technology
    Orient Overseas Container Line (OOCL))

Abstract

A central planner plays a significant role in the stowage planning of container transportation. This paper discusses how a central planner produces stowage plans for a container vessel, through its entire voyage, while considering factors such as vessel specifications, characteristics of service lane, operational constraints at each terminal, schedule management, control of vessel space, and vessel seaworthiness. Although many studies on stowage planning of containerships at one port have been published, few have focused on stowage planning in multiport itineraries, i.e., from the entire voyage perspective. In this study, therefore, three stowage plans, each focusing on the optimization of a single port, are used to show how a central planner improves cargo stowage rate by instead using the entire voyage. We target three improvements: (1) Reducing ballast water carried, among others, reducing fuel consumption and CO2 emissions; (2) Increasing TEU stowage allowance, and reducing ballast water carried while solving draft limitation and seaworthiness problems simultaneously; and (3) Increasing the capacity utilization of a vessel. The overall aim of this study is how to increase freight revenue through higher vessel capacity utilization; reduce ballast water carried; fuel consumption, and atmospheric emissions, considering both the seaworthiness of the vessel and the efficiency of terminal operations. The case study method has been applied. The results indicate that modified stowage plans, considering the entire voyage, can improve vessel capacity utilization, seaworthiness requirements and, apparently, profitability.

Suggested Citation

  • Chien-Chang Chou & Wen-Shin Shiau, 2025. "On improving containership stowage planning from the perspective of an entire voyage," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 27(2), pages 304-330, June.
  • Handle: RePEc:pal:marecl:v:27:y:2025:i:2:d:10.1057_s41278-024-00298-w
    DOI: 10.1057/s41278-024-00298-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-024-00298-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-024-00298-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    2. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    3. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    4. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    5. Jun Li & Yu Zhang & Sanyou Ji & Lanbo Zheng & Jin Xu, 2020. "Multi-stage hierarchical decomposition approach for stowage planning problem in inland container liner shipping," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(3), pages 381-399, March.
    6. Mordecai Avriel & Michal Penn & Naomi Shpirer & Smadar Witteboon, 1998. "Stowage planning for container ships to reduce the number of shifts," Annals of Operations Research, Springer, vol. 76(0), pages 55-71, January.
    7. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Twiller, Jaike & Sivertsen, Agnieszka & Pacino, Dario & Jensen, Rune Møller, 2024. "Literature survey on the container stowage planning problem," European Journal of Operational Research, Elsevier, vol. 317(3), pages 841-857.
    2. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    3. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    4. Buddhi A. Weerasinghe & H. Niles Perera & Xiwen Bai, 2024. "Optimizing container terminal operations: a systematic review of operations research applications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 307-341, June.
    5. Haoqi Xie & Daniela Ambrosino, 2025. "Operations Research, Machine Learning, and Integrated Techniques for Decision Problems in the Seaside Area of Container Terminals," SN Operations Research Forum, Springer, vol. 6(2), pages 1-51, June.
    6. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    7. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    8. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2021. "Joint optimization of container slot planning and truck scheduling for tandem quay cranes," European Journal of Operational Research, Elsevier, vol. 293(1), pages 149-166.
    9. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    10. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    11. Shih-Liang Chao & Pi-Hung Lin, 0. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-23.
    12. Chaemin Lee & Mun Keong Lee & Jae Young Shin, 2020. "Lashing Force Prediction Model with Multimodal Deep Learning and AutoML for Stowage Planning Automation in Containerships," Logistics, MDPI, vol. 5(1), pages 1-15, December.
    13. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    14. Shih-Liang Chao & Pi-Hung Lin, 2021. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 71-93, March.
    15. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    16. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
    17. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
    18. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    19. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.
    20. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:27:y:2025:i:2:d:10.1057_s41278-024-00298-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.