IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v21y2019i3d10.1057_s41278-019-00121-x.html
   My bibliography  Save this article

Artificial neural networks in freight rate forecasting

Author

Listed:
  • Zaili Yang

    () (Liverpool John Moores University)

  • Esin Erol Mehmed

    (Liverpool John Moores University)

Abstract

Reliable freight rate forecasts are essential to stimulate ocean transportation and ensure stakeholder benefits in a highly volatile shipping market. However, compared to traditional time-series approaches, there are few studies using artificial intelligence techniques (e.g. artificial neural networks, ANNs) to forecast shipping freight rates, and fewer still incorporating forward freight agreement (FFA) information for freight rate forecasts. The aim of this paper is to examine the ability of FFAs to improve forecasting accuracy. We use two different dynamic ANN models, NARNET and NARXNET, and we compare their performance for 1, 2, 3 and 6 months ahead. The accuracy of the forecasting models is evaluated with the use of mean squared error (MSE), based on actual secondary data including historical Baltic Panamax Index (BPI) data (available online), and primary data on Baltic forward assessment (BFA) collected from the Baltic Exchange. The experimental results show that, in general, NARXNET outperforms NARNET in all forecast horizons, revealing the importance of the information contained in FFAs in improving forecasting accuracy. Our findings provide better forecasts and insights into the future movements of freight markets and help rationalise chartering decisions.

Suggested Citation

  • Zaili Yang & Esin Erol Mehmed, 2019. "Artificial neural networks in freight rate forecasting," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(3), pages 390-414, September.
  • Handle: RePEc:pal:marecl:v:21:y:2019:i:3:d:10.1057_s41278-019-00121-x
    DOI: 10.1057/s41278-019-00121-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-019-00121-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evangelia Kasimati & Nikolaos Veraros, 2017. "Is there accuracy of forward freight agreements in forecasting future freight rates? An empirical investigation," Working Papers 230, Bank of Greece.
    2. Veenstra, Albert W. & Haralambides, Hercules E., 2001. "Multivariate autoregressive models for forecasting seaborne trade flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(4), pages 311-319, August.
    3. Fotis Papailias & Dimitrios D. Thomakos & Jiadong Liu, 2017. "The Baltic Dry Index: cyclicalities, forecasting and hedging strategies," Empirical Economics, Springer, vol. 52(1), pages 255-282, February.
    4. Qingcheng Zeng & Chenrui Qu & Adolf K.Y. Ng & Xiaofeng Zhao, 2016. "A new approach for Baltic Dry Index forecasting based on empirical mode decomposition and neural networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(2), pages 192-210, June.
    5. Manolis Kavussanos & Nikos Nomikos, 2003. "Price Discovery, Causality and Forecasting in the Freight Futures Market," Review of Derivatives Research, Springer, vol. 6(3), pages 203-230, October.
    6. André A P Santos & Luciano N Junkes & Floriano C M Pires Jr, 2014. "Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 16(1), pages 72-91, March.
    7. Jun Li & Michael G. Parsons, 1997. "Forecasting tanker freight rate using neural networks," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(1), pages 9-30, January.
    8. Batchelor, Roy & Alizadeh, Amir & Visvikis, Ilias, 2007. "Forecasting spot and forward prices in the international freight market," International Journal of Forecasting, Elsevier, vol. 23(1), pages 101-114.
    9. D V Lyridis & P Zacharioudakis & P Mitrou & A Mylonas, 2004. "Forecasting Tanker Market Using Artificial Neural Networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 6(2), pages 93-108, June.
    10. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    11. Lean Yu & Yang Zhao & Ling Tang, 2017. "Ensemble Forecasting for Complex Time Series Using Sparse Representation and Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 122-138, March.
    12. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    13. Ziaul Haque Munim & Hans-Joachim Schramm, 2017. "Forecasting container shipping freight rates for the Far East – Northern Europe trade lane," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 106-125, March.
    14. Manolis Kavussanos & Ilias Visvikis & Dimitris Dimitrakopoulos, 2010. "Information linkages between Panamax freight derivatives and commodity derivatives markets," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(1), pages 91-110, March.
    15. Kavussanos, Manolis G. & Alizadeh-M, Amir H., 2001. "Seasonality patterns in dry bulk shipping spot and time charter freight rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(6), pages 443-467, December.
    16. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    17. Yordan Leonov & Ventsislav Nikolov, 2012. "A wavelet and neural network model for the prediction of dry bulk shipping indices," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(3), pages 319-333, September.
    18. Shun Chen & Hilde Meersman & Eddy van de Voorde, 2012. "Forecasting spot rates at main routes in the dry bulk market," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(4), pages 498-537, December.
    19. Kavussanos, Manolis G. & Visvikis, Ilias D., 2004. "Market interactions in returns and volatilities between spot and forward shipping freight markets," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 2015-2049, August.
    20. Kevin X. Li & Guanqiu Qi & Wenming Shi & Zhongzhi Yang & Hee-Seok Bang & Su-Han Woo & Tsz Leung Yip, 2014. "Spillover effects and dynamic correlations between spot and forward tanker freight markets," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 683-696, December.
    21. Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
    22. Veenstra, Albert Willem & Franses, Philip Hans, 1997. "A co-integration approach to forecasting freight rates in the dry bulk shipping sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(6), pages 447-458, November.
    23. Jiao Zhang & Qingcheng Zeng & Xiaofeng Zhao, 2014. "Forecasting spot freight rates based on forward freight agreement and time charter contract," Applied Economics, Taylor & Francis Journals, vol. 46(29), pages 3639-3648, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Yuting & Li, Kevin X. & Chen, Shu-Ling & Shi, Wenming, 2020. "Contagion risk between the shipping freight and stock markets: Evidence from the recent US-China trade war," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:21:y:2019:i:3:d:10.1057_s41278-019-00121-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.palgrave-journals.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.