IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i4d10.1057_jors.2010.18.html
   My bibliography  Save this article

An integrated optimization model for managing the global value chain of a chemical commodities manufacturer

Author

Listed:
  • M Kannegiesser

    (Technical University of Berlin)

  • H-O Günther

    (Technical University of Berlin)

Abstract

The realization of supply chain management concepts goes along with the introduction of comprehensive software systems for supporting decisions at the strategic, tactical, and operational planning level. Moreover, in industry the focus has shifted from a pure logistics-oriented view towards the integration of pricing and revenue issues into cross-functional value chain planning models. This paper presents a practical decision support tool for global value chain planning in the production of chemical commodities. The proposed linear optimization model consists of various modules that reflect sales, distribution, production, and procurement activities within a company-internal value chain. The objective of the model is to maximize profit by coordinating all activities within the supply chain. The model formulation is related to a real industry case. It is shown how the model can be used to support decision making from sales to procurement by volume and value.

Suggested Citation

  • M Kannegiesser & H-O Günther, 2011. "An integrated optimization model for managing the global value chain of a chemical commodities manufacturer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 711-721, April.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:4:d:10.1057_jors.2010.18
    DOI: 10.1057/jors.2010.18
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.18
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.18?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ç Haksöz & S Seshadri, 2007. "Supply chain operations in the presence of a spot market: a review with discussion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1412-1429, November.
    2. Goetschalckx, Marc & Vidal, Carlos J. & Dogan, Koray, 2002. "Modeling and design of global logistics systems: A review of integrated strategic and tactical models and design algorithms," European Journal of Operational Research, Elsevier, vol. 143(1), pages 1-18, November.
    3. Das, K. & Sengupta, S., 2009. "A hierarchical process industry production-distribution planning model," International Journal of Production Economics, Elsevier, vol. 117(2), pages 402-419, February.
    4. Timpe, Christian H. & Kallrath, Josef, 2000. "Optimal planning in large multi-site production networks," European Journal of Operational Research, Elsevier, vol. 126(2), pages 422-435, October.
    5. Vidal, Carlos J. & Goetschalckx, Marc, 1997. "Strategic production-distribution models: A critical review with emphasis on global supply chain models," European Journal of Operational Research, Elsevier, vol. 98(1), pages 1-18, April.
    6. Meixell, Mary J. & Gargeya, Vidyaranya B., 2005. "Global supply chain design: A literature review and critique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 531-550, November.
    7. A P Barbosa-Póvoa & C M C Vieira, 2004. "Optimal scheduling of batch industrial facilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 116-122, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. Feng, Cheng-Min & Wu, Pei-Ju, 2009. "A tax savings model for the emerging global manufacturing network," International Journal of Production Economics, Elsevier, vol. 122(2), pages 534-546, December.
    3. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    4. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    5. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    6. Mula, Josefa & Peidro, David & Díaz-Madroñero, Manuel & Vicens, Eduardo, 2010. "Mathematical programming models for supply chain production and transport planning," European Journal of Operational Research, Elsevier, vol. 204(3), pages 377-390, August.
    7. Kristianto, Yohanes & Gunasekaran, Angappa & Helo, Petri, 2017. "Building the “Triple R” in global manufacturing," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 607-619.
    8. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    9. Gunasekaran, Angappa & Ngai, Eric W.T., 2009. "Modeling and analysis of build-to-order supply chains," European Journal of Operational Research, Elsevier, vol. 195(2), pages 319-334, June.
    10. Hsu, Chaug-Ing & Li, Hui-Chieh, 2009. "An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale," International Journal of Production Economics, Elsevier, vol. 118(2), pages 486-500, April.
    11. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    12. Wang, Juite & Shu, Yun-Feng, 2007. "A possibilistic decision model for new product supply chain design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1044-1061, March.
    13. Demeter, Krisztina & Szász, Levente & Kő, Andrea, 2019. "A text mining based overview of inventory research in the ISIR special issues 1994–2016," International Journal of Production Economics, Elsevier, vol. 209(C), pages 134-146.
    14. C A Poojari & C Lucas & G Mitra, 2008. "Robust solutions and risk measures for a supply chain planning problem under uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 2-12, January.
    15. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing, 2017. "An enhanced robustness approach for managing supply and demand uncertainties," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 620-631.
    16. Vernon N. Hsu & Kaijie Zhu, 2011. "Tax-Effective Supply Chain Decisions Under China's Export-Oriented Tax Policies," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 163-179, November.
    17. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    18. Moritz Julius Ziegler & Kilian Seifried & Philipp Kuske & Moritz Fleischmann, 2019. "TRUMPF Uses a Mixed Integer Model as Decision Support for Strategic Production Network Design," Interfaces, INFORMS, vol. 49(3), pages 213-226, May.
    19. Feng, Cheng-Min & Wu, Pei-Ju & Chia, Kai-Chieh, 2010. "A hybrid fuzzy integral decision-making model for locating manufacturing centers in China: A case study," European Journal of Operational Research, Elsevier, vol. 200(1), pages 63-73, January.
    20. Aurelija Burinskienė, 2021. "Designing a Multi-Stage Transport System Serving e-Commerce Activity," Sustainability, MDPI, vol. 13(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:4:d:10.1057_jors.2010.18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.