IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v59y2008i1d10.1057_palgrave.jors.2602328.html
   My bibliography  Save this article

An exact algorithm for a cross-docking supply chain network design problem

Author

Listed:
  • C S Sung

    (Korea Advanced Institute of Science and Technology)

  • W Yang

    (Korea Advanced Institute of Science and Technology)

Abstract

This paper proposes a branch-and-price algorithm as an exact algorithm for the cross-docking supply chain network design problem introduced by one of the authors of this paper. The objective is to optimally locate cross-docking (CD) centres and allocate vehicles for direct transportation services from the associated origin node to the associated CD centre or from the associated CD centre to the associated destination node so as to satisfy a given set of freight demands at minimum cost subject to the associated service (delivery) time restriction. A set-partitioning-based formulation is derived for the problem for which some solution properties are characterized. Based on the properties, a branch-and-price algorithm is derived. The properties can also be used in deriving any efficient local search heuristics with the move operation (neighbourhood search operation) of modifying assignment of some freight demands from current CD centres to other CD centres. Computational experiments show that the branch-and-price algorithm is effective and efficient and also that the solution properties contribute to improve the efficiency of the local search heuristics.

Suggested Citation

  • C S Sung & W Yang, 2008. "An exact algorithm for a cross-docking supply chain network design problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 119-136, January.
  • Handle: RePEc:pal:jorsoc:v:59:y:2008:i:1:d:10.1057_palgrave.jors.2602328
    DOI: 10.1057/palgrave.jors.2602328
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602328
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren B. Powell & Yosef Sheffi, 1989. "OR Practice—Design and Implementation of an Interactive Optimization System for Network Design in the Motor Carrier Industry," Operations Research, INFORMS, vol. 37(1), pages 12-29, February.
    2. Warren B. Powell, 1986. "A Local Improvement Heuristic for the Design of Less-than-Truckload Motor Carrier Networks," Transportation Science, INFORMS, vol. 20(4), pages 246-257, November.
    3. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    4. Cynthia Barnhart & Rina R. Schneur, 1996. "Air Network Design for Express Shipment Service," Operations Research, INFORMS, vol. 44(6), pages 852-863, December.
    5. Turgut Aykin, 1995. "Networking Policies for Hub-and-Spoke Systems with Application to the Air Transportation System," Transportation Science, INFORMS, vol. 29(3), pages 201-221, August.
    6. Cattrysse, Dirk. G. & Salomon, Marc & Van Wassenhove, Luk N., 1994. "A set partitioning heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 72(1), pages 167-174, January.
    7. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    8. R. S. Garfinkel & A. W. Neebe & M. R. Rao, 1974. "An Algorithm for the M-Median Plant Location Problem," Transportation Science, INFORMS, vol. 8(3), pages 217-236, August.
    9. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    10. Martin Savelsbergh, 1997. "A Branch-and-Price Algorithm for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 45(6), pages 831-841, December.
    11. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    12. Teodor Gabriel Crainic & Jacques Roy, 1992. "Design of Regular Intercity Driver Routes for the LTL Motor Carrier Industry," Transportation Science, INFORMS, vol. 26(4), pages 280-295, November.
    13. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    14. Sung, C. S. & Jin, H. W., 2001. "Dual-based approach for a hub network design problem under non-restrictive policy," European Journal of Operational Research, Elsevier, vol. 132(1), pages 88-105, July.
    15. Judith M. Farvolden & Warren B. Powell, 1994. "Subgradient Methods for the Service Network Design Problem," Transportation Science, INFORMS, vol. 28(3), pages 256-272, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prashant Barsing & Yash Daultani & Omkarprasad S. Vaidya & Sushil Kumar, 2018. "Cross-docking Centre Location in a Supply Chain Network: A Social Network Analysis Approach," Global Business Review, International Management Institute, vol. 19(3_suppl), pages 218-234, June.
    2. Ratko Stanković & Kristijan Rogić & Mario Šafran, 2022. "Saving Energy by Optimizing Warehouse Dock Door Allocation," Energies, MDPI, vol. 15(16), pages 1-14, August.
    3. Saeid Nasrollahi & Hasan Hosseini-Nasab & Mohamad Bagher Fakhrzad & Mahboobeh Honarvar, 2022. "A developed nonlinear model for the location-allocation and transportation problems in a cross-docking distribution network," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 127-148.
    4. Buijs, Paul & Vis, Iris F.A. & Carlo, Héctor J., 2014. "Synchronization in cross-docking networks: A research classification and framework," European Journal of Operational Research, Elsevier, vol. 239(3), pages 593-608.
    5. İlker Küçükoğlu & Nursel Öztürk, 2017. "Two-stage optimisation method for material flow and allocation management in cross-docking networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 410-429, January.
    6. Liao, T.W. & Egbelu, P.J. & Chang, P.C., 2013. "Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations," International Journal of Production Economics, Elsevier, vol. 141(1), pages 212-229.
    7. Ieva Meidute-Kavaliauskiene & Nihal Sütütemiz & Figen Yıldırım & Shahryar Ghorbani & Renata Činčikaitė, 2022. "Optimizing Multi Cross-Docking Systems with a Multi-Objective Green Location Routing Problem Considering Carbon Emission and Energy Consumption," Energies, MDPI, vol. 15(4), pages 1-24, February.
    8. Van Belle, Jan & Valckenaers, Paul & Cattrysse, Dirk, 2012. "Cross-docking: State of the art," Omega, Elsevier, vol. 40(6), pages 827-846.
    9. Konur, Dinçer & Golias, Mihalis M., 2013. "Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: A meta-heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 71-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    2. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    3. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    4. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    5. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    6. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    7. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    8. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    9. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    10. Louwerse, I. & Mijnarends, J. & Meuffels, I. & Huisman, D. & Fleuren, H.A., 2012. "Scheduling Movements in the Network of an Express Service Provider," Econometric Institute Research Papers EI 2012-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.
    12. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.
    13. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    14. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    15. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    16. Raymond K. Cheung & B. Muralidharan, 2000. "Dynamic Routing for Priority Shipments in LTL Service Networks," Transportation Science, INFORMS, vol. 34(1), pages 86-98, February.
    17. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    18. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    19. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    20. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:59:y:2008:i:1:d:10.1057_palgrave.jors.2602328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.