IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Predicción de quiebras empresariales en economías emergentes: uso de un modelo logístico mixto || Bankruptcy Prediction in Emerging Economies: Use of a Mixed Logistic Model

Listed author(s):
  • Caro, Norma Patricia

    ()

    (Facultad de Ciencias Económicas. Universidad Nacional de Córdoba (Argentina))

  • Díaz, Margarita

    ()

    (Facultad de Ciencias Económicas. Universidad Nacional de Córdoba (Argentina))

  • Porporato, Marcela

    ()

    (School of Administrative Studies (SAS). York University, Toronto (Canadá))

Registered author(s):

    Este trabajo replica y adapta el modelo de Jones y Hensher (2004) a los datos de una economía emergente con el propósito de evaluar su validez externa. Se compara el desempeño del modelo logístico estándar en relación con el modelo logístico mixto para predecir el riesgo de crisis en el periodo 1993-2000, utilizando estados contables de empresas argentinas y ratios definidos en estudios de Altman y Jones y Hensher. Como en estudios anteriores, rentabilidad, rotación, endeudamiento y flujo de fondos operativos explican la probabilidad de crisis financiera. La contribución de esta nueva metodología reduce la tasa de error del tipo I a un 9 %. Se demuestra que el modelo logístico mixto, que tiene en cuenta la heterogeneidad no observada, supera ampliamente el desempeño del modelo logístico estándar. || This study is a replication and adaptation of Jones and Hensher (2004) model in an emerging economy with the purpose of testing its eternal validity. It compares the logistic standard model's performance with the logistic mixed model to predict bankruptcy risk of Argentinean companies between 1993-2000 by using financial statements and ratios defined in previous studies by Altman and Jones and Hensher. Similar to previous studies, profitability, asset turnover, debt and cash flow from operations explain financial distress' probability. The main contribution of this new methodology is the important reduction of error type I to the 9 %. This study asserts that the logistic mixed model, that considers the effect of non-observed heterogeneity, significantly improves the performance of the logistic standard model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.upo.es/RevMetCuant/pdf/vol16/art84.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/bibtex.php?id=84
    Download Restriction: no

    Article provided by Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration in its journal Revista de Métodos Cuantitativos para la Economía y la Empresa.

    Volume (Year): 16 (2013)
    Issue (Month): 1 (December)
    Pages: 200-215

    as
    in new window

    Handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:200-215
    Contact details of provider: Postal:
    Carretera de Utrera km.1, 41013 Sevilla

    Phone: + 34 954 34 8913
    Fax: + 34 954 34 9339
    Web page: http://www.upo.es/economia/metodos/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, 09.
    2. Tamura, Karin Ayumi & Giampaoli, Viviana, 2013. "New prediction method for the mixed logistic model applied in a marketing problem," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 202-216.
    3. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    4. repec:bla:joares:v:22:y:1984:i::p:59-82 is not listed on IDEAS
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, August.
    6. Altman, Edward I., 1984. "The success of business failure prediction models : An international survey," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 171-198, June.
    7. Edward I Altman & Tara K N Baidya & Luis Manoel Ribeiro Dias, 1979. "Assessing Potential Financial Problems for Firms in Brazil," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 10(2), pages 9-24, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:200-215. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publicación Digital - UPO)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.