IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i7d10.1038_s41560-022-01035-4.html
   My bibliography  Save this article

Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm

Author

Listed:
  • Sara Pescetelli

    (University of Rome Tor Vergata)

  • Antonio Agresti

    (University of Rome Tor Vergata)

  • George Viskadouros

    (Hellenic Mediterranean University)

  • Stefano Razza

    (University of Rome Tor Vergata)

  • Konstantinos Rogdakis

    (Hellenic Mediterranean University
    Hellenic Mediterranean University Research Center)

  • Ioannis Kalogerakis

    (Hellenic Mediterranean University)

  • Emmanuel Spiliarotis

    (Hellenic Mediterranean University)

  • Enrico Leonardi

    (GreatCell Solar Italia SRL)

  • Paolo Mariani

    (University of Rome Tor Vergata)

  • Luca Sorbello

    (GreatCell Solar Italia SRL)

  • Marco Pierro

    (University of Rome Tor Vergata
    EURAC Research)

  • Cristina Cornaro

    (University of Rome Tor Vergata
    University of Rome Tor Vergata)

  • Sebastiano Bellani

    (Istituto Italiano di Tecnologia
    BeDimensional S.p.A.)

  • Leyla Najafi

    (Istituto Italiano di Tecnologia
    BeDimensional S.p.A.)

  • Beatriz Martín-García

    (Istituto Italiano di Tecnologia)

  • Antonio Esaú Rio Castillo

    (Istituto Italiano di Tecnologia
    BeDimensional S.p.A.)

  • Reinier Oropesa-Nuñez

    (BeDimensional S.p.A.)

  • Mirko Prato

    (Istituto Italiano di Tecnologia)

  • Simone Maranghi

    (University of Siena
    University of Siena)

  • Maria Laura Parisi

    (University of Siena
    University of Siena)

  • Adalgisa Sinicropi

    (University of Siena
    University of Siena)

  • Riccardo Basosi

    (University of Siena
    University of Siena)

  • Francesco Bonaccorso

    (Istituto Italiano di Tecnologia
    BeDimensional S.p.A.)

  • Emmanuel Kymakis

    (Hellenic Mediterranean University
    Hellenic Mediterranean University Research Center)

  • Aldo Carlo

    (University of Rome Tor Vergata
    Istituto di Struttura della Materia (CNR-ISM) National Research Council)

Abstract

As a vital step towards the industrialization of perovskite solar cells, outdoor field tests of large-scale perovskite modules and panels represent a mandatory step to be accomplished. Here we demonstrate the manufacturing of large-area (0.5 m2) perovskite solar panels, each containing 40 modules whose interfaces are engineered with two-dimensional materials (GRAphene-PErovskite (GRAPE) panels). We further integrate nine GRAPE panels for a total panel area of 4.5 m2 in a stand-alone solar farm infrastructure with peak power exceeding 250 W, proving the scalability of this technology. We provide insights on the system operation by analysing the panel characteristics as a function of temperature and light intensity. The analysis, carried out over a months-long timescale, highlights the key role of the lamination process of the panels on the entire system degradation. A life-cycle assessment based on primary data indicates the high commercial potential of the GRAPE panel technology in terms of energy and environmental performances.

Suggested Citation

  • Sara Pescetelli & Antonio Agresti & George Viskadouros & Stefano Razza & Konstantinos Rogdakis & Ioannis Kalogerakis & Emmanuel Spiliarotis & Enrico Leonardi & Paolo Mariani & Luca Sorbello & Marco Pi, 2022. "Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm," Nature Energy, Nature, vol. 7(7), pages 597-607, July.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:7:d:10.1038_s41560-022-01035-4
    DOI: 10.1038/s41560-022-01035-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-022-01035-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-022-01035-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    2. Eui Hyuk Jung & Nam Joong Jeon & Eun Young Park & Chan Su Moon & Tae Joo Shin & Tae-Youl Yang & Jun Hong Noh & Jangwon Seo, 2019. "Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)," Nature, Nature, vol. 567(7749), pages 511-515, March.
    3. Mark V. Khenkin & Eugene A. Katz & Antonio Abate & Giorgio Bardizza & Joseph J. Berry & Christoph Brabec & Francesca Brunetti & Vladimir Bulović & Quinn Burlingame & Aldo Di Carlo & Rongrong Cheacharo, 2020. "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures," Nature Energy, Nature, vol. 5(1), pages 35-49, January.
    4. Stefano Razza & Sara Pescetelli & Antonio Agresti & Aldo Di Carlo, 2021. "Laser Processing Optimization for Large-Area Perovskite Solar Modules," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Fan Fu & Thomas Feurer & Thomas Paul Weiss & Stefano Pisoni & Enrico Avancini & Christian Andres & Stephan Buecheler & Ayodhya N. Tiwari, 2017. "High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration," Nature Energy, Nature, vol. 2(1), pages 1-9, January.
    6. Makrides, George & Zinsser, Bastian & Phinikarides, Alexander & Schubert, Markus & Georghiou, George E., 2012. "Temperature and thermal annealing effects on different photovoltaic technologies," Renewable Energy, Elsevier, vol. 43(C), pages 407-417.
    7. Simone Maranghi & Maria Laura Parisi & Riccardo Basosi & Adalgisa Sinicropi, 2019. "Environmental Profile of the Manufacturing Process of Perovskite Photovoltaics: Harmonization of Life Cycle Assessment Studies," Energies, MDPI, vol. 12(19), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Shyang Chen & Ying-Hsun Hung & Yu-Sheng Lin & Jieh-Ren Chang & Chi-Hsiang Lo & Hong-Kai You, 2023. "Prevention of PID Phenomenon for Solar Panel Based on Mathematical Data Analysis Models," Mathematics, MDPI, vol. 11(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    3. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    6. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    7. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    9. Abdallah, Amir & Martinez, Diego & Figgis, Benjamin & El Daif, Ounsi, 2016. "Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions," Renewable Energy, Elsevier, vol. 97(C), pages 860-865.
    10. Hao Tian & Wei Zhang & Lingzhi Xie & Zhichun Ni & Qingzhu Wei & Xinwen Wu & Wei Wang & Mo Chen, 2019. "Thermal Comfort Evaluation of Rooms Installed with STPV Windows," Energies, MDPI, vol. 12(5), pages 1-15, February.
    11. Zaheen Uddin & Junhui Ran & Elias Stathatos & Bin Yang, 2023. "Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering," Energies, MDPI, vol. 16(9), pages 1-12, April.
    12. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    13. Kalavala Shivaprakash Srivishnu & Prasutha Rani Markapudi & Senthilarasu Sundaram & Lingamallu Giribabu, 2023. "Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Advances," Energies, MDPI, vol. 16(2), pages 1-25, January.
    14. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    16. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    18. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    19. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Sharma, Vikrant & Kumar, Arun & Sastry, O.S. & Chandel, S.S., 2013. "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," Energy, Elsevier, vol. 58(C), pages 511-518.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:7:d:10.1038_s41560-022-01035-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.