IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v43y2012icp407-417.html
   My bibliography  Save this article

Temperature and thermal annealing effects on different photovoltaic technologies

Author

Listed:
  • Makrides, George
  • Zinsser, Bastian
  • Phinikarides, Alexander
  • Schubert, Markus
  • Georghiou, George E.

Abstract

The effect of temperature on different grid-connected photovoltaic (PV) technologies installed in Cyprus was analyzed in this study. Initially, the performance losses due to the temperature effect on the annual energy yield of each technology were investigated using measurements of module temperature and the manufacturer provided maximum power point (MPP) temperature coefficients, γPMPP. The same methodology was also applied using outdoor evaluated γPMPP coefficients for comparison. When using the manufacturer’s temperature coefficient, the results showed that over the evaluation period the highest average thermal losses in annual dc energy yield were 8% for mono-crystalline silicon (mono-c-Si) and 9% for multi-crystalline silicon (multi-c-Si) technologies while for thin-film technologies, the average losses were 5%. Similar losses were found when using the outdoor evaluated temperature coefficients. Additionally, temperature effects on the seasonal performance of the different technologies were evident on the monthly average performance ratio (PR). For the amorphous silicon (a-Si) technologies, a performance increase from spring until early autumn was observed and was attributed to thermal annealing. The effect of thermal annealing on the performance was evident by filtering dc MPP power measurements at high irradiance (greater than 800 W/m2) and restricting the values at geometric air mass (AM) in the range 1 ≤ geometric AM ≤ 1.5. The extracted dc MPP power was corrected for irradiance and temperature at standard test conditions (STC) using the manufacturer provided γPMPP over a period of two years. Subsequently, the effect of thermal annealing was further investigated by extracting dc MPP power measurements at geometric AM in the range 1.4 ≤ geometric AM ≤ 1.6 in order to minimize the spectral influences on the performance of a-Si technologies. An increase in power for all the a-Si technologies was obvious during the warm summer season and was recorded over the period of March until September for both years.

Suggested Citation

  • Makrides, George & Zinsser, Bastian & Phinikarides, Alexander & Schubert, Markus & Georghiou, George E., 2012. "Temperature and thermal annealing effects on different photovoltaic technologies," Renewable Energy, Elsevier, vol. 43(C), pages 407-417.
  • Handle: RePEc:eee:renene:v:43:y:2012:i:c:p:407-417
    DOI: 10.1016/j.renene.2011.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111006483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makrides, George & Zinsser, Bastian & Norton, Matthew & Georghiou, George E. & Schubert, Markus & Werner, Jürgen H., 2010. "Potential of photovoltaic systems in countries with high solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 754-762, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trujillo, C.L. & Santamaría, F. & Gaona, E.E., 2016. "Modeling and testing of two-stage grid-connected photovoltaic micro-inverters," Renewable Energy, Elsevier, vol. 99(C), pages 533-542.
    2. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    3. Cucchiella, Federica & D’Adamo, Idiano, 2012. "Feasibility study of developing photovoltaic power projects in Italy: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1562-1576.
    4. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    5. Matos, Fernando B. & Camacho, José R. & Rodrigues, Pollyanna & Guimarães Jr., Sebastião C., 2011. "A research on the use of energy resources in the Amazon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3196-3206, August.
    6. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    7. Rivas, David & Saleme-Vila, Salomón & Ortega-Izaguirre, Rogelio & Chalé-Lara, Fabio & Caballero-Briones, Felipe, 2013. "A climatological estimate of incident solar energy in Tamaulipas, northeastern Mexico," Renewable Energy, Elsevier, vol. 60(C), pages 293-301.
    8. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    9. Daher, Daha Hassan & Gaillard, Léon & Amara, Mohamed & Ménézo, Christophe, 2018. "Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant," Renewable Energy, Elsevier, vol. 125(C), pages 729-737.
    10. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    11. Dadouche, F. & Béthoux, O. & Kleider, J.-P., 2011. "New silicon thin-film technology associated with original DC–DC converter: An economic alternative way to improve photovoltaic systems efficiencies," Energy, Elsevier, vol. 36(3), pages 1749-1757.
    12. Sharma, Vikrant & Kumar, Arun & Sastry, O.S. & Chandel, S.S., 2013. "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," Energy, Elsevier, vol. 58(C), pages 511-518.
    13. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    14. Vats, Kanchan & Tiwari, G.N., 2012. "Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system," Applied Energy, Elsevier, vol. 96(C), pages 409-416.
    15. Ramgolam, Yatindra Kumar & Soyjaudah, Krishnaraj Madhavjee Sunjiv, 2017. "Holistic performance appraisal of a photovoltaic system," Renewable Energy, Elsevier, vol. 109(C), pages 440-448.
    16. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    17. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    18. Radmehr, Mehrshad & Willis, Ken & Kenechi, Ugo Elinwa, 2014. "A framework for evaluating WTP for BIPV in residential housing design in developing countries: A case study of North Cyprus," Energy Policy, Elsevier, vol. 70(C), pages 207-216.
    19. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    20. Nalini Dookie & Xsitaaz T. Chadee & Ricardo M. Clarke, 2022. "A Prefeasibility Solar Photovoltaic Tool for Tropical Small Island Developing States," Energies, MDPI, vol. 15(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:43:y:2012:i:c:p:407-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.