IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14865.html
   My bibliography  Save this article

Long-term trends in the intensity and relative toxicity of herbicide use

Author

Listed:
  • Andrew R. Kniss

    (University of Wyoming)

Abstract

Herbicide use is among the most criticized aspects of modern farming, especially as it relates to genetically engineered (GE) crops. Many previous analyses have used flawed metrics to evaluate herbicide intensity and toxicity trends. Here, I show that herbicide use intensity increased over the last 25 years in maize, cotton, rice and wheat. Although GE crops have been previously implicated in increasing herbicide use, herbicide increases were more rapid in non-GE crops. Even as herbicide use increased, chronic toxicity associated with herbicide use decreased in two out of six crops, while acute toxicity decreased in four out of six crops. In the final year for which data were available (2014 or 2015), glyphosate accounted for 26% of maize, 43% of soybean and 45% of cotton herbicide applications. However, due to relatively low chronic toxicity, glyphosate contributed only 0.1, 0.3 and 3.5% of the chronic toxicity hazard in those crops, respectively.

Suggested Citation

  • Andrew R. Kniss, 2017. "Long-term trends in the intensity and relative toxicity of herbicide use," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14865
    DOI: 10.1038/ncomms14865
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14865
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walsh, Alison & Kingwell, Ross, 2021. "The Future of Glyphosate in Australian Agriculture," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 29(4), November.
    2. Braeden Van Deynze & Scott M. Swinton & David A. Hennessy, 2022. "Are glyphosate‐resistant weeds a threat to conservation agriculture? Evidence from tillage practices in soybeans," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 645-672, March.
    3. Lee, Seungki & Moschini, GianCarlo & Perry, Edward D., 2023. "Genetically engineered varieties and applied pesticide toxicity in U.S. maize and soybeans: Heterogeneous and evolving impacts," Ecological Economics, Elsevier, vol. 211(C).
    4. Walsh, Alison & Kingwell, Ross, 2021. "Economic implications of the loss of glyphosate and paraquat on Australian mixed enterprise farms," Agricultural Systems, Elsevier, vol. 193(C).
    5. Perry, Edward D. & Moschini, GianCarlo, 2020. "Neonicotinoids in U.S. maize: Insecticide substitution effects and environmental risk," Journal of Environmental Economics and Management, Elsevier, vol. 102(C).
    6. David Zilberman & Tim G. Holland & Itai Trilnick, 2018. "Agricultural GMOs—What We Know and Where Scientists Disagree," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    7. Sellare, Jorge & Meemken, Eva-Marie & Qaim, Matin, 2020. "Fairtrade, Agrochemical Input Use, and Effects on Human Health and the Environment," Ecological Economics, Elsevier, vol. 176(C).
    8. Bullock, David S. & D'Arcangelo, Filippo Maria & Desquilbet, Marion, 2018. "A discussion of the market and policy failures associated with the adoption of herbicide-tolerant crops," TSE Working Papers 18-959, Toulouse School of Economics (TSE), revised Aug 2019.
    9. Bovay, John & Alston, Julian M., 2018. "GMO food labels in the United States: Economic implications of the new law," Food Policy, Elsevier, vol. 78(C), pages 14-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.