IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64790-4.html
   My bibliography  Save this article

Climate change impacts on ocean light in Arctic ecosystems

Author

Listed:
  • Trond Kristiansen

    (Farallon Institute
    San Francisco)

  • Øystein Varpe

    (and Bjerknes Centre for Climate Research
    Norwegian Institute for Nature Research)

  • Elizabeth R. Selig

    (Stanford University)

  • Benjamin J. Laurel

    (NOAA)

  • William J. Sydeman

    (Farallon Institute)

  • Michaela I. Hegglin

    (Forschungszentrum Jülich
    University of Reading)

  • Phillip J. Wallhead

    (Norwegian Institute for Water Research)

Abstract

Climate change is causing major sea ice losses, leading to increased light availability across polar marine ecosystems, however the consequences are largely unknown. We quantify how future conditions for sea ice and snow, storm-driven waves, clouds, ozone, air and ocean temperature, and chlorophyll-a will affect seasonal absorption and reflection of light in Arctic seas, alongside growth and survival of fish. Using four CMIP6 model inputs and a spectral radiative transfer model, we predict a 75–160% increase in visible light by 2100 in the Northern Bering, Chukchi, and Barents Seas. We predict increased sunlight and warmer summer waters, with reduced phytoplankton levels, will negatively impact cold-water fish species growth and survival during summer, demonstrated here for polar cod. Asynchrony in prey and light availability, with prolonged periods of warmer waters, will reduce polar cod survival in the fall and restrict habitats in these regions after 2060. Warmer-water species like walleye pollock and Atlantic cod will be less impacted but may struggle at high latitudes during the polar night. Ocean warming coupled with increased light availability will accelerate changes in Arctic ecosystems, compromising the growth and survival of Arctic species in transitional zones and facilitating the northward expansion of boreal species.

Suggested Citation

  • Trond Kristiansen & Øystein Varpe & Elizabeth R. Selig & Benjamin J. Laurel & William J. Sydeman & Michaela I. Hegglin & Phillip J. Wallhead, 2025. "Climate change impacts on ocean light in Arctic ecosystems," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64790-4
    DOI: 10.1038/s41467-025-64790-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64790-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64790-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Behrenfeld & Robert T. O’Malley & David A. Siegel & Charles R. McClain & Jorge L. Sarmiento & Gene C. Feldman & Allen J. Milligan & Paul G. Falkowski & Ricardo M. Letelier & Emmanuel S. Bos, 2006. "Climate-driven trends in contemporary ocean productivity," Nature, Nature, vol. 444(7120), pages 752-755, December.
    2. Maria Fossheim & Raul Primicerio & Edda Johannesen & Randi B. Ingvaldsen & Michaela M. Aschan & Andrey V. Dolgov, 2015. "Recent warming leads to a rapid borealization of fish communities in the Arctic," Nature Climate Change, Nature, vol. 5(7), pages 673-677, July.
    3. Hauke Flores & Gaëlle Veyssière & Giulia Castellani & Jeremy Wilkinson & Mario Hoppmann & Michael Karcher & Lovro Valcic & Astrid Cornils & Maxime Geoffroy & Marcel Nicolaus & Barbara Niehoff & Pierre, 2023. "Sea-ice decline could keep zooplankton deeper for longer," Nature Climate Change, Nature, vol. 13(10), pages 1122-1130, October.
    4. Grégory Beaugrand & Keith M. Brander & J. Alistair Lindley & Sami Souissi & Philip C. Reid, 2003. "Plankton effect on cod recruitment in the North Sea," Nature, Nature, vol. 426(6967), pages 661-664, December.
    5. Gabriella Ljungström & Tom J. Langbehn & Christian Jørgensen, 2021. "Light and energetics at seasonal extremes limit poleward range shifts," Nature Climate Change, Nature, vol. 11(6), pages 530-536, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Mackinson, S. & Daskalov, G. & Heymans, J.J. & Neira, S. & Arancibia, H. & Zetina-Rejón, M. & Jiang, H. & Cheng, H.Q. & Coll, M. & Arreguin-Sanchez, F. & Keeble, K. & Shannon, L., 2009. "Which forcing factors fit? Using ecosystem models to investigate the relative influence of fishing and changes in primary productivity on the dynamics of marine ecosystems," Ecological Modelling, Elsevier, vol. 220(21), pages 2972-2987.
    3. Gurkan, Zeren & Christensen, Asbjørn & Maar, Marie & Møller, Eva Friis & Madsen, Kristine Skovgaard & Munk, Peter & Mosegaard, Henrik, 2013. "Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic–biogeochemical model," Ecological Modelling, Elsevier, vol. 250(C), pages 294-306.
    4. Buchheister, Andre & Wilberg, Michael J. & Miller, Thomas J. & Latour, Robert J., 2015. "Simulating bottom-up effects on predator productivity and consequences for the rebuilding timeline of a depleted population," Ecological Modelling, Elsevier, vol. 311(C), pages 48-62.
    5. Gurkan, Zeren & Christensen, Asbjørn & van Deurs, Mikael & Mosegaard, Henrik, 2012. "Growth and survival of larval and early juvenile Lesser Sandeel in patchy prey field in the North Sea: An examination using individual-based modeling," Ecological Modelling, Elsevier, vol. 232(C), pages 78-90.
    6. Elígio de Raús Maúre & Genki Terauchi & Joji Ishizaka & Nicholas Clinton & Michael DeWitt, 2021. "Globally consistent assessment of coastal eutrophication," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Gurib-Fakim, Ameenah & Smith, Linda & Acikgoz, Nazimi & Avato, Patrick & Bossio, Deborah A. & Ebi, Kristie. & Goncalves, Andre & Heinemann, Jack A. & Herrmann, Thora Martina & Padgham, Jonathan & Penn, 2009. "Options to enhance the impact of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    8. Williams, Meryl J., 2004. "World Fish Supplies, Outlook and Food Security," 2004: Fish, Aquaculture and Food Security: Sustaining Fish as a Food Supply, 11 August 2004 124062, Crawford Fund.
    9. Jin Wei & Xiaonan Ji & Wei Hu, 2022. "Characteristics of Phytoplankton Production in Wet and Dry Seasons in Hyper-Eutrophic Lake Taihu, China," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    10. Ruth Beatriz Mezzalira Pincinato & Frank Asche & Atle Oglend, 2020. "Climate change and small pelagic fish price volatility," Climatic Change, Springer, vol. 161(4), pages 591-599, August.
    11. Vitul Agarwal & Jonathan Chávez-Casillas & Keisuke Inomura & Colleen B. Mouw, 2024. "Patterns in the temporal complexity of global chlorophyll concentration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Zhang, Dahai & Fan, Wei & Yang, Jing & Pan, Yiwen & Chen, Ying & Huang, Haocai & Chen, Jiawang, 2016. "Reviews of power supply and environmental energy conversions for artificial upwelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 659-668.
    13. Quentin Grafton, R., 2010. "Adaptation to climate change in marine capture fisheries," Marine Policy, Elsevier, vol. 34(3), pages 606-615, May.
    14. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2013. "Reprint of: “Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model”," Ecological Modelling, Elsevier, vol. 264(C), pages 48-63.
    15. Nascimento, Marcela C. & Husson, Berengere & Guillet, Lilia & Pedersen, Torstein, 2023. "Modelling the spatial shifts of functional groups in the Barents Sea using a climate-driven spatial food web model," Ecological Modelling, Elsevier, vol. 481(C).
    16. Reid S. Brennan & James A. deMayo & Hans G. Dam & Michael B. Finiguerra & Hannes Baumann & Melissa H. Pespeni, 2022. "Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Qinwang Xing & Haiqing Yu & Hui Wang, 2024. "Global mapping and evolution of persistent fronts in Large Marine Ecosystems over the past 40 years," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Prabir Panja & Tridib Kar & Dipak Kumar Jana, 2024. "Impacts of global warming on phytoplankton–zooplankton dynamics: a modelling study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 13495-13513, May.
    19. Watson, Reg A. & Nowara, Gabrielle B. & Tracey, Sean R. & Fulton, Elizabeth A. & Bulman, Cathy M. & Edgar, Graham J. & Barrett, Neville S. & Lyle, Jeremy M. & Frusher, Stewart D. & Buxton, Colin D., 2013. "Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity," Ecological Modelling, Elsevier, vol. 264(C), pages 115-129.
    20. Silvia Díaz & Patricia De Francisco & Sanna Olsson & Ángeles Aguilera & Elena González-Toril & Ana Martín-González, 2020. "Toxicity, Physiological, and Ultrastructural Effects of Arsenic and Cadmium on the Extremophilic Microalga Chlamydomonas acidophila," IJERPH, MDPI, vol. 17(5), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64790-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.