IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62737-3.html
   My bibliography  Save this article

Interaction-driven giant electrostatic modulation of ion permeation in atomically small capillaries

Author

Listed:
  • Dhal Biswabhusan

    (Indian Institute of Technology Gandhinagar)

  • Yechan Noh

    (University of Colorado Boulder)

  • Sanat Nalini Paltasingh

    (Indian Institute of Technology Bhubaneswar)

  • Chandrakar Naman

    (Indian Institute of Technology Gandhinagar)

  • Siva Sankar Nemala

    (International Iberian Nanotechnology Laboratory)

  • Rathi Aparna

    (Indian Institute of Technology Gandhinagar)

  • Kaushik Suvigya

    (Indian Institute of Technology Gandhinagar)

  • Andrea Capasso

    (International Iberian Nanotechnology Laboratory)

  • Saroj Kumar Nayak

    (Indian Institute of Technology Bhubaneswar)

  • Li-Hsien Yeh

    (National Taiwan University of Science and Technology
    National Taiwan University of Science and Technology)

  • Kalon Gopinadhan

    (Indian Institute of Technology Gandhinagar
    Indian Institute of Technology Gandhinagar)

Abstract

Manipulating the electrostatic double layer and tuning the conductance in nanofluidic systems at salt concentrations of 100 mM or higher has been a persistent challenge. The primary reasons are (i) the short electrostatic proximity length, $${{{\boldsymbol{ \sim }}}}$$ ~ 3–10 Å, and (ii) difficulties in fabricating atomically small capillaries. Here, we successfully fabricate in-plane vermiculite laminates with transport heights of $${{{\boldsymbol{ \sim }}}}$$ ~ 3–5 Å, which exhibit a cation selectivity close to 1 even at a 1000 mM concentration, suggesting an overlapping electrostatic double layer. For gate voltages from −2 V to +1 V, the K+-intercalated vermiculite shows a remarkable conductivity modulation exceeding 1400% at a 1000 mM KCl concentration. The gated ON/OFF ratio is mostly unaffected by the ion concentration (10–1000 mM), which confirms that the electrostatic double layer overlaps with the collective ion movement within the channel with reduced activation energy. In contrast, vermiculite laminates intercalated with Ca2+ and Al3+ ions display reduced conductance with increasing negative gate voltage, highlighting the importance of ion-specific gating effects under Å-scale confinement. Our findings contribute to a deeper understanding of electrostatic phenomena occurring in highly confined fluidic channels, opening the way to the exploration of the vast library of two-dimensional materials.

Suggested Citation

  • Dhal Biswabhusan & Yechan Noh & Sanat Nalini Paltasingh & Chandrakar Naman & Siva Sankar Nemala & Rathi Aparna & Kaushik Suvigya & Andrea Capasso & Saroj Kumar Nayak & Li-Hsien Yeh & Kalon Gopinadhan, 2025. "Interaction-driven giant electrostatic modulation of ion permeation in atomically small capillaries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62737-3
    DOI: 10.1038/s41467-025-62737-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62737-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62737-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shihao Su & Yifan Zhang & Shengyuan Peng & Linxin Guo & Yong Liu & Engang Fu & Huijun Yao & Jinlong Du & Guanghua Du & Jianming Xue, 2022. "Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jiandong Feng & Michael Graf & Ke Liu & Dmitry Ovchinnikov & Dumitru Dumcenco & Mohammad Heiranian & Vishal Nandigana & Narayana R. Aluru & Andras Kis & Aleksandra Radenovic, 2016. "Single-layer MoS2 nanopores as nanopower generators," Nature, Nature, vol. 536(7615), pages 197-200, August.
    4. Lalita Saini & Siva Sankar Nemala & Aparna Rathi & Suvigya Kaushik & Gopinadhan Kalon, 2022. "Selective transport of water molecules through interlayer spaces in graphite," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Sungsoon Kim & Sangjin Choi & Hae Gon Lee & Dana Jin & Gwangmook Kim & Taehoon Kim & Joon Sang Lee & Wooyoung Shim, 2021. "Neuromorphic van der Waals crystals for substantial energy generation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eli Hoenig & Yu Han & Kangli Xu & Jingyi Li & Mingzhan Wang & Chong Liu, 2024. "In situ generation of (sub) nanometer pores in MoS2 membranes for ion-selective transport," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Khayet, Mohamed & Aytaç, Ersin & Essalhi, Mohamed & Cipollina, Andrea & García-Fernández, Loreto & Contreras-Martínez, Jorge & García-Payo, Carmen & Ruiz-García, Alejandro & Figoli, Alberto, 2025. "Elucidating the dynamics of salinity gradient energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    3. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    4. Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
    5. Chenxing Wang & Peng Duan & Yinpeng Huang & Xulei Lu & Chunqiao Fu & Yong Zhang & Linmao Qian & Tingting Yang, 2025. "Micro-meso-macroporous channels finely tailored for highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Ren, Qinlong & Zhu, Huangyi & Chen, Kelei & Zhang, J.F. & Qu, Z.G., 2022. "Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion," Applied Energy, Elsevier, vol. 307(C).
    10. Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.
    11. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Makusu Tsutsui & Wei-Lun Hsu & Chien Hsu & Denis Garoli & Shukun Weng & Hirofumi Daiguji & Tomoji Kawai, 2025. "Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Jin Wang & Zeyuan Song & Miaolu He & Yongchao Qian & Di Wang & Zheng Cui & Yuan Feng & Shangzhen Li & Bo Huang & Xiangyu Kong & Jinming Han & Lei Wang, 2024. "Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Song, Dongxing & Li, Lu & Huang, Ce & Wang, Ke, 2023. "Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation," Applied Energy, Elsevier, vol. 334(C).
    16. Chen, Xi & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2022. "Impacts of transmembrane pH gradient on nanofluidic salinity gradient energy conversion," Renewable Energy, Elsevier, vol. 187(C), pages 440-449.
    17. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Yongli Qi & Dongyeol Jang & Jaehyeon Ryu & Tianyu Bai & Yieljae Shin & Wen Gu & Aditya Iyer & Gen Li & Hongtao Ma & Jyun-you Liou & Matthijs Meer & Yi Qiang & Hui Fang, 2025. "Stabilized carbon coating on microelectrodes for scalable and interoperable neurotransmitter sensing," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62737-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.