IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923000454.html
   My bibliography  Save this article

Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation

Author

Listed:
  • Song, Dongxing
  • Li, Lu
  • Huang, Ce
  • Wang, Ke

Abstract

Nanofluidic reverse electrodialysis (NERD) is a promising method for the collections of salinity gradient energy. However, further improving the performance is necessary for the commercial applications, while only optimizing the nanopore structure and concentration ratio is hard to achieve the propose due to the tradeoff between high selectivity and low resistance in NERD systems. Based on ionic thermoelectric (i-TE) materials, which possessing huge Seebeck coefficient and natural ion channels, using the i-TE membrane and low-grade heat energy to introduce an additional driving force of temperature difference is proposed for the acceleration of ionic migrations. Results show that the effect of temperature difference is equivalent to overlaying an additional voltage difference, and then the synergy between i-TE conversion and NERD significantly enhances both the power density and efficiency. For the temperature differences of 10 K and Seebeck coefficient of 10 mV K−1, the power densities can be enhanced from 11.72 W/m2 to 23.4–93.8 W/m2, and the efficiencies can also be increased to nearly the upper limit of 0.5. Our study provides new roadmap for improving the NERD performance and the utilizing the low-grade heat energy.

Suggested Citation

  • Song, Dongxing & Li, Lu & Huang, Ce & Wang, Ke, 2023. "Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000454
    DOI: 10.1016/j.apenergy.2023.120681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Zhang & Li He & Congcong Zhu & Yongchao Qian & Liping Wen & Lei Jiang, 2020. "Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Kim, Juwan & Kim, Sung Jin & Kim, Dong-Kwon, 2013. "Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores," Energy, Elsevier, vol. 51(C), pages 413-421.
    3. Kai Xiao & Lu Chen & Ruotian Chen & Tobias Heil & Saul Daniel Cruz Lemus & Fengtao Fan & Liping Wen & Lei Jiang & Markus Antonietti, 2019. "Artificial light-driven ion pump for photoelectric energy conversion," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Jiandong Feng & Michael Graf & Ke Liu & Dmitry Ovchinnikov & Dumitru Dumcenco & Mohammad Heiranian & Vishal Nandigana & Narayana R. Aluru & Andras Kis & Aleksandra Radenovic, 2016. "Single-layer MoS2 nanopores as nanopower generators," Nature, Nature, vol. 536(7615), pages 197-200, August.
    5. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    6. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    7. Alessandro Siria & Philippe Poncharal & Anne-Laure Biance & Rémy Fulcrand & Xavier Blase & Stephen T. Purcell & Lydéric Bocquet, 2013. "Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube," Nature, Nature, vol. 494(7438), pages 455-458, February.
    8. Daniilidis, Alexandros & Herber, Rien & Vermaas, David A., 2014. "Upscale potential and financial feasibility of a reverse electrodialysis power plant," Applied Energy, Elsevier, vol. 119(C), pages 257-265.
    9. Wang, Zhihao & Li, Jianbo & Zhang, Chen & Wang, Hao & Kong, Xiangqiang, 2022. "Power production from seawater and discharge brine of thermal desalination units by reverse electrodialysis," Applied Energy, Elsevier, vol. 314(C).
    10. Cheng Chi & Meng An & Xin Qi & Yang Li & Ruihan Zhang & Gongze Liu & Chongjia Lin & He Huang & Hao Dang & Baris Demir & Yan Wang & Weigang Ma & Baoling Huang & Xing Zhang, 2022. "Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Qinlong & Zhu, Huangyi & Chen, Kelei & Zhang, J.F. & Qu, Z.G., 2022. "Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion," Applied Energy, Elsevier, vol. 307(C).
    2. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    3. Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.
    4. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    5. Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
    6. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Tamburini, A. & Tedesco, M. & Cipollina, A. & Micale, G. & Ciofalo, M. & Papapetrou, M. & Van Baak, W. & Piacentino, A., 2017. "Reverse electrodialysis heat engine for sustainable power production," Applied Energy, Elsevier, vol. 206(C), pages 1334-1353.
    8. Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
    9. Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhang, X.F. & Zhang, X. & Qu, Z.G. & Pu, J.Q. & Wang, Q., 2022. "Thermal-enhanced nanofluidic osmotic energy conversion with the interfacial photothermal method," Applied Energy, Elsevier, vol. 326(C).
    11. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Bevacqua, M. & Tamburini, A. & Papapetrou, M. & Cipollina, A. & Micale, G. & Piacentino, A., 2017. "Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion," Energy, Elsevier, vol. 137(C), pages 1293-1307.
    13. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    14. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.
    15. Chen, Xi & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2022. "Impacts of transmembrane pH gradient on nanofluidic salinity gradient energy conversion," Renewable Energy, Elsevier, vol. 187(C), pages 440-449.
    16. Yunhyun Lee & Hyun Jung Kim & Dong-Kwon Kim, 2020. "Power Generation from Concentration Gradient by Reverse Electrodialysis in Anisotropic Nanoporous Anodic Aluminum Oxide Membranes," Energies, MDPI, vol. 13(4), pages 1-15, February.
    17. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    19. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    20. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.