IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46439-w.html
   My bibliography  Save this article

Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting

Author

Listed:
  • Jin Wang

    (Xi’an University of Architecture and Technology)

  • Zeyuan Song

    (Xi’an University of Architecture and Technology)

  • Miaolu He

    (Xi’an University of Architecture and Technology)

  • Yongchao Qian

    (Chinese Academy of Sciences)

  • Di Wang

    (Xi’an University of Architecture and Technology)

  • Zheng Cui

    (Xi’an University of Architecture and Technology)

  • Yuan Feng

    (Xi’an University of Architecture and Technology)

  • Shangzhen Li

    (Xi’an University of Architecture and Technology)

  • Bo Huang

    (Xi’an Jiaotong University)

  • Xiangyu Kong

    (Chinese Academy of Sciences)

  • Jinming Han

    (Xi’an University of Architecture and Technology)

  • Lei Wang

    (Xi’an University of Architecture and Technology)

Abstract

Nanofluidic membranes offer exceptional promise for osmotic energy conversion, but the challenge of balancing ionic selectivity and permeability persists. Here, we present a bionic nanofluidic system based on two-dimensional (2D) copper tetra-(4-carboxyphenyl) porphyrin framework (Cu-TCPP). The inherent nanoporous structure and horizontal interlayer channels endow the Cu-TCPP membrane with ultrahigh ion permeability and allow for a power density of 16.64 W m−2, surpassing state of-the-art nanochannel membranes. Moreover, leveraging the photo-thermal property of Cu-TCPP, light-controlled ion active transport is realized even under natural sunlight. By combining solar energy with salinity gradient, the driving force for ion transport is reinforced, leading to further improvements in energy conversion performance. Notably, light could even eliminate the need for salinity gradient, achieving a power density of 0.82 W m−2 in a symmetric solution system. Our work introduces a new perspective on developing advanced membranes for solar/ionic energy conversion and extends the concept of salinity energy to a notion of ionic energy.

Suggested Citation

  • Jin Wang & Zeyuan Song & Miaolu He & Yongchao Qian & Di Wang & Zheng Cui & Yuan Feng & Shangzhen Li & Bo Huang & Xiangyu Kong & Jinming Han & Lei Wang, 2024. "Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46439-w
    DOI: 10.1038/s41467-024-46439-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46439-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46439-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Youxing Jiang & Alice Lee & Jiayun Chen & Vanessa Ruta & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2003. "X-ray structure of a voltage-dependent K+ channel," Nature, Nature, vol. 423(6935), pages 33-41, May.
    2. Jiandong Feng & Michael Graf & Ke Liu & Dmitry Ovchinnikov & Dumitru Dumcenco & Mohammad Heiranian & Vishal Nandigana & Narayana R. Aluru & Andras Kis & Aleksandra Radenovic, 2016. "Single-layer MoS2 nanopores as nanopower generators," Nature, Nature, vol. 536(7615), pages 197-200, August.
    3. Jin Wang & Zhijie Zhang & Jiani Zhu & Mengtao Tian & Shuchang Zheng & Fudi Wang & Xudong Wang & Lei Wang, 2020. "Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Claudia Backes & Ronan J. Smith & Niall McEvoy & Nina C. Berner & David McCloskey & Hannah C. Nerl & Arlene O’Neill & Paul J. King & Tom Higgins & Damien Hanlon & Nils Scheuschner & Janina Maultzsch &, 2014. "Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    5. Bruce E. Logan & Menachem Elimelech, 2012. "Membrane-based processes for sustainable power generation using water," Nature, Nature, vol. 488(7411), pages 313-319, August.
    6. Xingya Li & Gengping Jiang & Meipeng Jian & Chen Zhao & Jue Hou & Aaron W. Thornton & Xinyi Zhang & Jefferson Zhe Liu & Benny D. Freeman & Huanting Wang & Lei Jiang & Huacheng Zhang, 2023. "Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    4. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    5. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    6. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    7. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    8. Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
    9. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Osmotic power potential in remote regions of Quebec," Renewable Energy, Elsevier, vol. 81(C), pages 62-70.
    10. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    11. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    12. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Nasir, Muhammad & Nakanishi, Yuji & Patmonoaji, Anindityo & Suekane, Tetsuya, 2020. "Effects of porous electrode pore size and operating flow rate on the energy production of capacitive energy extraction," Renewable Energy, Elsevier, vol. 155(C), pages 278-285.
    14. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Maximize the operating profit of a SWRO-PRO integrated process for optimal water production and energy recovery," Renewable Energy, Elsevier, vol. 94(C), pages 304-313.
    15. Ozer, Mahmut, 2005. "Determination of rate kinetics in ion channels by the path probability method and Onsager reciprocity theorem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 397-414.
    16. Turkan Haliloglu & Nir Ben-Tal, 2008. "Cooperative Transition between Open and Closed Conformations in Potassium Channels," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-11, August.
    17. Jia, Zhijun & Wang, Baoguo & Song, Shiqiang & Fan, Yongsheng, 2014. "Blue energy: Current technologies for sustainable power generation from water salinity gradient," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 91-100.
    18. Tobias Linder & Bert L de Groot & Anna Stary-Weinzinger, 2013. "Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    19. Abreham Tesfaye Besha & Misgina Tilahun Tsehaye & Girum Ayalneh Tiruye & Abaynesh Yihdego Gebreyohannes & Aymere Awoke & Ramato Ashu Tufa, 2020. "Deployable Membrane-Based Energy Technologies: the Ethiopian Prospect," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    20. Luo, Qizhao & Pei, Junxian & Yun, Panfeng & Hu, Xuejiao & Cao, Bin & Shan, Kunpeng & Tang, Bin & Huang, Kaiming & Chen, Aofei & Huang, Lu & Huang, Zhi & Jiang, Haifeng, 2023. "Simultaneous water production and electricity generation driven by synergistic temperature-salinity gradient in thermo-osmosis process," Applied Energy, Elsevier, vol. 351(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46439-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.