IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61996-4.html
   My bibliography  Save this article

3D bioprinting of plant and animal cell-based hybrid food

Author

Listed:
  • Sushila Maharjan

    (Harvard Medical School)

  • Camila Yamashita

    (Harvard Medical School
    Biological Sciences Department)

  • Cheng Pau Lee

    (Harvard Medical School
    Singapore University of Technology and Design)

  • Alejandro Villalobos Zepeda

    (Harvard Medical School)

  • Ana Karen Michel Farias

    (Harvard Medical School)

  • Andrea Duarte Rivera

    (Harvard Medical School)

  • Francisco Javier Aguilar Rojas

    (Harvard Medical School)

  • David Sebastian Rendon Ruiz

    (Harvard Medical School)

  • Armando Martinez Hernandez

    (Harvard Medical School)

  • David Hyram Hernandez Medina

    (Harvard Medical School)

  • Carlos Ezio Garciamendez-Mijares

    (Harvard Medical School)

  • Julia Japo

    (Harvard Medical School)

  • Ludivina Bermea Jimenez

    (Harvard Medical School)

  • Sonia Golombek

    (Harvard Medical School)

  • Alessandro Bentivogli

    (Harvard Medical School)

  • Michinao Hashimoto

    (Singapore University of Technology and Design)

  • Yu Shrike Zhang

    (Harvard Medical School
    Harvard University
    Broad Institute of MIT and Harvard)

Abstract

Cellular agriculture is an emerging field that leverages stem cell biology, biotechnology, and tissue engineering to produce meat and other agricultural products through cell culture techniques. One of the most promising methods within this domain is three-dimensional (3D) bioprinting, which allows for precise layering of cells to form sophisticated structures. In this study, we introduce fully automated chaotic bioprinting with a custom-built extrusion setup taking advantage of an integrated Kenics static mixer printhead to create plant and animal cell-based hybrid noodles. These bioprinted hybrid noodles are made of approximately 30–40% unicellular plant cells (Chlamydomonas or Chlorella microalgae) and 60–70% muscle cells (C2C12 or chicken myoblasts). We further 3D-bioprinted aesthetically appealing hybrid food products of various shapes and sizes, where their textures, nutritional contents, and cooking behaviors are evaluated. This proof-of-concept study demonstrates that 3D bioprinting can reliably produce a distinct category of plant- and animal cell-based hybrid foods and highlights opportunities to create complex culinary designs and explore diverse nutritional profiles with precision and efficiency.

Suggested Citation

  • Sushila Maharjan & Camila Yamashita & Cheng Pau Lee & Alejandro Villalobos Zepeda & Ana Karen Michel Farias & Andrea Duarte Rivera & Francisco Javier Aguilar Rojas & David Sebastian Rendon Ruiz & Arma, 2025. "3D bioprinting of plant and animal cell-based hybrid food," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61996-4
    DOI: 10.1038/s41467-025-61996-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61996-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61996-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    2. Milae Lee & Sohyeon Park & Bumgyu Choi & Woojin Choi & Hyun Lee & Jeong Min Lee & Seung Tae Lee & Ki Hyun Yoo & Dongoh Han & Geul Bang & Heeyoun Hwang & Won-Gun Koh & Sangmin Lee & Jinkee Hong, 2024. "Cultured meat with enriched organoleptic properties by regulating cell differentiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ken E. Giller & Thomas Delaune & João Vasco Silva & Katrien Descheemaeker & Gerrie Ven & Antonius G.T. Schut & Mark Wijk & James Hammond & Zvi Hochman & Godfrey Taulya & Regis Chikowo & Sudha Narayana, 2021. "The future of farming: Who will produce our food?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1073-1099, October.
    4. Milena M. Ramírez-Rodrigues & Carolina Estrada-Beristain & Jorge Metri-Ojeda & Alexa Pérez-Alva & Diana K. Baigts-Allende, 2021. "Spirulina platensis Protein as Sustainable Ingredient for Nutritional Food Products Development," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    5. Mian Wang & Wanlu Li & Jin Hao & Arthur Gonzales & Zhibo Zhao & Regina Sanchez Flores & Xiao Kuang & Xuan Mu & Terry Ching & Guosheng Tang & Zeyu Luo & Carlos Ezio Garciamendez-Mijares & Jugal Kishore, 2022. "Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Dong-Hee Kang & Fiona Louis & Hao Liu & Hiroshi Shimoda & Yasutaka Nishiyama & Hajime Nozawa & Makoto Kakitani & Daisuke Takagi & Daijiro Kasa & Eiji Nagamori & Shinji Irie & Shiro Kitano & Michiya Ma, 2021. "Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Natalie R. Rubio & Ning Xiang & David L. Kaplan, 2020. "Plant-based and cell-based approaches to meat production," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Zhou & Hongwei Zheng & Yanchi Wu & Haowen Yin & Xiangzhao Mao & Ningyang Li & Huarong Guo & Yaoguang Chang & Xiaoming Jiang & Qinghui Ai & Changhu Xue, 2025. "Scalable production of muscle and adipose cell-laden microtissues using edible macroporous microcarriers for 3D printing of cultured fish fillets," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    2. Ye Liu & Anqi Gao & Tiantian Wang & Yongqian Zhang & Gaoxiang Zhu & Sida Ling & Zhaozhao Wu & Yuhong Jin & Haoke Chen & Yuming Lai & Rui Zhang & Yuchen Yang & Jianyong Han & Yulin Deng & Yanan Du, 2025. "Growing meat on autoclaved vegetables with biomimetic stiffness and micro-patterns," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Gaoxiang Zhu & Dengfeng Gao & Linzi Li & Yixuan Yao & Yingjie Wang & Minglei Zhi & Jinying Zhang & Xinze Chen & Qianqian Zhu & Jie Gao & Tianzhi Chen & Xiaowei Zhang & Tong Wang & Suying Cao & Aijin M, 2023. "Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Charlotte Fabri & Sam Vermeulen & Steven Van Passel & Sergei Schaub, 2024. "Crop diversification and the effect of weather shocks on Italian farmers' income and income risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(3), pages 955-980, September.
    5. Adriane Terezinha Schneider & Rosangela Rodrigues Dias & Mariany Costa Deprá & Darissa Alves Dutra & Richard Luan Silva Machado & Cristiano Ragagnin de Menezes & Leila Queiroz Zepka & Eduardo Jacob-Lo, 2024. "The Intersectionality Between Amazon and Commodities Production: A Close Look at Sustainability," Land, MDPI, vol. 13(10), pages 1-18, October.
    6. Tilahun Amede & Aggie Asiimwe Konde & Jean Jacques Muhinda & George Bigirwa, 2023. "Sustainable Farming in Practice: Building Resilient and Profitable Smallholder Agricultural Systems in Sub-Saharan Africa," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    7. Klara Fischer & Giulia Vico & Helena Röcklinsberg & Hans Liljenström & Riccardo Bommarco, 2025. "Progress towards sustainable agriculture hampered by siloed scientific discourses," Nature Sustainability, Nature, vol. 8(1), pages 66-74, January.
    8. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    9. Aureane Cristina Teixeira Ferreira Cândido & Taiane Alves da Silva & Bruno Uéslei Ferreira Cândido & Raphael Tapajós & Siglea Sanna Noirtin Freitas Chaves & Arystides Resende Silva & Werlleson Nascime, 2024. "Carbon and Methane as Indicators of Environmental Efficiency of a Silvopastoral System in Eastern Amazon, Brazil," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    10. Adam J. M. Devenish & Petra Schmitter & Nugun. P. Jellason & Nafeesa Esmail & Nur M. Abdi & Selase K. Adanu & Barbara Adolph & Maha Al-Zu’bi & Amali A. Amali & Jennie Barron & Abbie S. A. Chapman & Al, 2023. "One Hundred Priority Questions for the Development of Sustainable Food Systems in Sub-Saharan Africa," Land, MDPI, vol. 12(10), pages 1-23, October.
    11. Mário Santos & Helena Moreira & João Alexandre Cabral & Ronaldo Gabriel & Andreia Teixeira & Rita Bastos & Alfredo Aires, 2022. "Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    12. Xiaopeng Wang & Chengyi Tu & Shuhao Chen & Sicheng Wang & Ying Fan & Samir Suweis & Paolo D'Odorico, 2024. "Quantifying Global Food Trade: A Net Caloric Content Approach to Food Trade Network Analysis," Papers 2411.18856, arXiv.org, revised Dec 2024.
    13. Yangteng Ou & Shixiang Cao & Yang Zhang & Hongjia Zhu & Chengzhi Guo & Wei Yan & Fengxue Xin & Weiliang Dong & Yanli Zhang & Masashi Narita & Ziyi Yu & Tuomas P. J. Knowles, 2023. "Bioprinting microporous functional living materials from protein-based core-shell microgels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Gouranga Das & Ranajoy Bhattacharyya & Sugata Marjit, 2023. "Contract Farming and Food Insecurity in an Open Competitive Economy: Growth, Distribution, and Government Policy," JRFM, MDPI, vol. 16(4), pages 1-26, April.
    15. Tomas Gabriel Bas, 2025. "Globalization vs. Glocalization: Learn Lessons from Two Global Crises, Such as the Russia–Ukraine Conflict and the COVID-19 Pandemic, for the Agro-Food and Agro-Industrial Sector," Agriculture, MDPI, vol. 15(2), pages 1-47, January.
    16. Wim Paas & Miranda P M Meuwissen & Martin K van Ittersum & Pytrik Reidsma, 2023. "Temporal and inter-farm variability of economic and environmental farm performance: A resilience perspective on potato producing regions in the Netherlands," PLOS Sustainability and Transformation, Public Library of Science, vol. 2(2), pages 1-24, February.
    17. Xu, Zhan & Liang, Zhengyuan & Cheng, Jiali & Groot, Jeroen C.J. & Zhang, Chaochun & Cong, Wen-Feng & Zhang, Fusuo & van der Werf, Wopke, 2024. "Comparing the sustainability of smallholder and business farms in the North China Plain; a case study in Quzhou," Agricultural Systems, Elsevier, vol. 216(C).
    18. Kun Zeng & Xiong Duan & Bin Chen & Lanxi Jia, 2025. "Spatiotemporal Heterogeneity of Eco-Efficiency of Cultivated Land Use and Its Influencing Factors: Evidence from the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    19. Berchoux, Tristan & Hutton, Craig W. & Hensengerth, Oliver & Voepel, Hal E. & Tri, Van P.D. & Vu, Pham T. & Hung, Nghia N. & Parsons, Dan & Darby, Stephen E., 2023. "Effect of planning policies on land use dynamics and livelihood opportunities under global environmental change: Evidence from the Mekong Delta," Land Use Policy, Elsevier, vol. 131(C).
    20. Edwin Mumah & Yu Hong & Yangfen Chen, 2025. "Exploring the reality of global food insecurity and policy gaps," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61996-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.