IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59982-x.html
   My bibliography  Save this article

No compromise in efficiency from the co-application of a marine and a terrestrial CDR method

Author

Listed:
  • Yiannis Moustakis

    (Ludwig-Maximilians-Universität in Munich)

  • Hao-Wei Wey

    (GEOMAR Helmholtz Centre for Ocean Research Kiel)

  • Tobias Nützel

    (Ludwig-Maximilians-Universität in Munich)

  • Andreas Oschlies

    (GEOMAR Helmholtz Centre for Ocean Research Kiel
    Kiel University)

  • Julia Pongratz

    (Ludwig-Maximilians-Universität in Munich
    Max Planck Institute for Meteorology)

Abstract

Modelled pathways consistent with the Paris Agreement goals to mitigate warming typically include the large-scale application of Carbon Dioxide Removal (CDR), which can include both land- and marine-based CDR methods. However, the Earth system responses and feedbacks to scaling up and/or combining different CDR methods remain understudied. Here, these are assessed by employing two Earth System Models, with a multifactorial setup of 42 emission-driven simulations covering the whole spectrum of Afforestation/Reforestation (0-927 Mha) and of Ocean Alkalinity Enhancement (0-18 Pmol) over the 21st century. We show that global carbon flux responses scale linearly when different CDR methods are scaled up and/or combined, which suggests that the efficiency of CDR is insensitive to both the amount of CDR and the CDR portfolio composition. Therefore, combining CDR methods, which seems beneficial for diversifying risks and remaining below sustainability thresholds, does not compromise the efficiency of individual applications.

Suggested Citation

  • Yiannis Moustakis & Hao-Wei Wey & Tobias Nützel & Andreas Oschlies & Julia Pongratz, 2025. "No compromise in efficiency from the co-application of a marine and a terrestrial CDR method," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59982-x
    DOI: 10.1038/s41467-025-59982-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59982-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59982-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kirsten Zickfeld & Deven Azevedo & Sabine Mathesius & H. Damon Matthews, 2021. "Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions," Nature Climate Change, Nature, vol. 11(7), pages 613-617, July.
    2. Veronika Eyring & Peter M. Cox & Gregory M. Flato & Peter J. Gleckler & Gab Abramowitz & Peter Caldwell & William D. Collins & Bettina K. Gier & Alex D. Hall & Forrest M. Hoffman & George C. Hurtt & A, 2019. "Taking climate model evaluation to the next level," Nature Climate Change, Nature, vol. 9(2), pages 102-110, February.
    3. David P. Keller & Ellias Y. Feng & Andreas Oschlies, 2014. "Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
    4. Carl-Friedrich Schleussner & Gaurav Ganti & Quentin Lejeune & Biqing Zhu & Peter Pfleiderer & Ruben Prütz & Philippe Ciais & Thomas L. Frölicher & Sabine Fuss & Thomas Gasser & Matthew J. Gidden & Cha, 2024. "Overconfidence in climate overshoot," Nature, Nature, vol. 634(8033), pages 366-373, October.
    5. Jay Fuhrman & Candelaria Bergero & Maridee Weber & Seth Monteith & Frances M. Wang & Andres F. Clarens & Scott C. Doney & William Shobe & Haewon McJeon, 2023. "Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system," Nature Climate Change, Nature, vol. 13(4), pages 341-350, April.
    6. Lea Dorgeist & Clemens Schwingshackl & Selma Bultan & Julia Pongratz, 2024. "A consistent budgeting of terrestrial carbon fluxes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yiannis Moustakis & Tobias Nützel & Hao-Wei Wey & Wenkai Bao & Julia Pongratz, 2024. "Temperature overshoot responses to ambitious forestation in an Earth System Model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicoletta Brazzola & Amir Meskaldji & Anthony Patt & Tim Tröndle & Christian Moretti, 2025. "The role of direct air capture in achieving climate-neutral aviation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Yiannis Moustakis & Tobias Nützel & Hao-Wei Wey & Wenkai Bao & Julia Pongratz, 2024. "Temperature overshoot responses to ambitious forestation in an Earth System Model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    4. Yanzhao Li & Xiang Qin & Zizhen Jin & Yushuo Liu, 2023. "Future Projection of Extreme Precipitation Indices over the Qilian Mountains under Global Warming," IJERPH, MDPI, vol. 20(6), pages 1-28, March.
    5. Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
    6. Wei-Lei Wang & Mar Fernández-Méndez & Franziska Elmer & Guang Gao & Yangyang Zhao & Yuye Han & Jiandong Li & Fei Chai & Minhan Dai, 2023. "Ocean afforestation is a potentially effective way to remove carbon dioxide," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    7. Günther, Philipp & Garske, Beatrice & Heyl, Katharine & Ekardt, Felix, 2024. "Carbon farming, overestimated negative emissions and the limits to emissions trading in land-use governance: the EU carbon removal certification proposal," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36, pages 1-24.
    8. Yann Gaucher & Katsumasa Tanaka & Daniel J. A. Johansson & Daniel S. Goll & Philippe Ciais, 2025. "Leveraging ecosystems responses to enhanced rock weathering in mitigation scenarios," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    11. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
    12. Jens Terhaar & Linus Vogt & Nicholas P. Foukal, 2025. "Atlantic overturning inferred from air-sea heat fluxes indicates no decline since the 1960s," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    13. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    14. Nadine Mengis & David P. Keller & Wilfried Rickels & Martin Quaas & Andreas Oschlies, 2019. "Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection," Climatic Change, Springer, vol. 153(3), pages 305-322, April.
    15. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    16. Amit Kumar & Abhilash Singh & Kumar Gaurav, 2023. "Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5163-5184, June.
    17. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
    18. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Michael S. Diamond & Kelly Wanser & Olivier Boucher, 2023. "“Cooling credits” are not a viable climate solution," Climatic Change, Springer, vol. 176(7), pages 1-9, July.
    20. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59982-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.