Author
Listed:
- Fanpeng Chen
(Tianjin University)
- Chuanqi Cheng
(Tianjin University)
- Jiajun Wang
(Tianjin University)
- Yanran Han
(Tianjin University)
- Bo-Hang Zhao
(Tianjin University)
- Bin Zhang
(Tianjin University)
Abstract
Metastable carbides and chalcogenides are attractive candidates for wide and promising applications. However, their inherent instability leads to synthetic difficulty and poor durability. Thus, the development of facile strategies for the controllable synthesis and stabilization of metastable carbides is still a great challenge. Here, taking metastable ɛ-Fe2C as a case study, potassium ions (K+) are theoretically predicted and experimentally reported to control the synthesis of metastable ɛ-Fe2C from an Fe2N precursor by increasing the surface carbon chemical potential (μC). The controllable synthesis and improved stability are attributed to the better-matched denitriding and carburizing rates and the impeded spillover of carbon atoms in metastable ɛ-Fe2C with high carbon contents due to the enhanced surface μC. In addition, this strategy is suitable for synthesizing metastable γ’-MoC, MoN, 1T-MoS2, 1T-MoSe2, 1T-MoSe2xTe2(1−x), and 1T-Mo1−xWxSe2, highlighting the universality of the methodology. Impressively, gram-level scalable metastable ɛ-Fe2C remains stable for more than 398 days in air. Furthermore, ɛ-Fe2C exhibits remarkable olefin selectivity and durability for more than 36 h of continuous testing. This work not only demonstrates a facile, easily scalable, and general strategy for accessing various metastable carbides and chalcogenides but also addresses the synthetic difficulty and poor durability challenge of metastable materials.
Suggested Citation
Fanpeng Chen & Chuanqi Cheng & Jiajun Wang & Yanran Han & Bo-Hang Zhao & Bin Zhang, 2025.
"Potassium-stabilized metastable carbides and chalcogenides via surface chemical potential modulation,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59124-3
DOI: 10.1038/s41467-025-59124-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59124-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.