IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47550-8.html
   My bibliography  Save this article

Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface

Author

Listed:
  • Hui Xin

    (Chinese Academy of Sciences
    Sichuan University)

  • Rongtan Li

    (Chinese Academy of Sciences)

  • Le Lin

    (Chinese Academy of Sciences)

  • Rentao Mu

    (Chinese Academy of Sciences)

  • Mingrun Li

    (Chinese Academy of Sciences)

  • Dan Li

    (Sichuan University)

  • Qiang Fu

    (Chinese Academy of Sciences)

  • Xinhe Bao

    (Chinese Academy of Sciences)

Abstract

In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.

Suggested Citation

  • Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47550-8
    DOI: 10.1038/s41467-024-47550-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47550-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47550-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuri Suchorski & Martin Datler & Ivan Bespalov & Johannes Zeininger & Michael Stöger-Pollach & Johannes Bernardi & Henrik Grönbeck & Günther Rupprechter, 2018. "Visualizing catalyst heterogeneity by a multifrequential oscillating reaction," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Christopher M. Goodwin & Patrick Lömker & David Degerman & Bernadette Davies & Mikhail Shipilin & Fernando Garcia-Martinez & Sergey Koroidov & Jette Katja Mathiesen & Raffael Rameshan & Gabriel L. S. , 2024. "Operando probing of the surface chemistry during the Haber–Bosch process," Nature, Nature, vol. 625(7994), pages 282-286, January.
    3. Yang-Gang Wang & Donghai Mei & Vassiliki-Alexandra Glezakou & Jun Li & Roger Rousseau, 2015. "Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    4. Hao-Xin Liu & Jin-Ying Li & Xuetao Qin & Chao Ma & Wei-Wei Wang & Kai Xu & Han Yan & Dequan Xiao & Chun-Jiang Jia & Qiang Fu & Ding Ma, 2022. "Ptn–Ov synergistic sites on MoOx/γ-Mo2N heterostructure for low-temperature reverse water–gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xiao Zhang & Mengtao Zhang & Yuchen Deng & Mingquan Xu & Luca Artiglia & Wen Wen & Rui Gao & Bingbing Chen & Siyu Yao & Xiaochen Zhang & Mi Peng & Jie Yan & Aowen Li & Zheng Jiang & Xingyu Gao & Sufen, 2021. "A stable low-temperature H2-production catalyst by crowding Pt on α-MoC," Nature, Nature, vol. 589(7842), pages 396-401, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanpeng Chen & Chuanqi Cheng & Jiajun Wang & Yanran Han & Bo-Hang Zhao & Bin Zhang, 2025. "Potassium-stabilized metastable carbides and chalcogenides via surface chemical potential modulation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Wenbin Li & Bing Liu & Qing Guo & Wenjie Guo & Sai Zhang & Yongquan Qu, 2025. "Reaction-induced regioselective reconstruction of Ni-doped Ce(OH)3/CeO2 enables exceptional activity and selectivity for reverse water-shift reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao-Xin Liu & Wei-Wei Wang & Xin-Pu Fu & Jin-Cheng Liu & Chun-Jiang Jia, 2024. "Direct cleavage of C=O double bond in CO2 by the subnano MoOx surface on Mo2N," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Alexander Genest & Carla Weigl & Günther Rupprechter, 2023. "Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Bing Deng & Zhe Wang & Weiyin Chen & John Tianci Li & Duy Xuan Luong & Robert A. Carter & Guanhui Gao & Boris I. Yakobson & Yufeng Zhao & James M. Tour, 2022. "Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Kaur, Gurpreet & Zhu, Haijin & Dhawale, Dattatray S. & Ju, HyungKuk & Biswas, Saheli & Kim, Jae Hyung & Yoon, Hyung Chul & Giddey, Sarbjit, 2025. "A review on intermediate temperature electrochemical synthesis of ammonia," Applied Energy, Elsevier, vol. 393(C).
    6. Haiyan Wang & Shuang Wang & Shida Liu & Yiling Dai & Zhenghao Jia & Xuejing Li & Shuhe Liu & Feixiong Dang & Kevin J. Smith & Xiaowa Nie & Shuandi Hou & Xinwen Guo, 2024. "Redox-induced controllable engineering of MnO2-MnxCo3-xO4 interface to boost catalytic oxidation of ethane," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Yue Pan & Shiyu Zhen & Xiaozhi Liu & Mengshu Ge & Jianxiong Zhao & Lin Gu & Dan Zhou & Liang Zhang & Dong Su, 2025. "Looping metal-support interaction in heterogeneous catalysts during redox reactions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Xuan Liang & Xiangxin Jin & Shixiang Yu & Chengyu Li & Chuqiao Song & Guan Sheng & Xuemin Ye & Rui Gao & Lili Lin & Ding Ma, 2025. "CO-resistant hydrogenation over noble metal/α-MoC catalyst," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Fanpeng Chen & Chuanqi Cheng & Jiajun Wang & Yanran Han & Bo-Hang Zhao & Bin Zhang, 2025. "Potassium-stabilized metastable carbides and chalcogenides via surface chemical potential modulation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Yuqi Yang & Anders Hellman & Henrik Grönbeck, 2025. "Inherent strain and kinetic coupling determine the kinetics of ammonia synthesis over Ru nanoparticles," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    12. Xiao-Long Zhang & Peng-Cheng Yu & Shu-Ping Sun & Lei Shi & Peng-Peng Yang & Zhi-Zheng Wu & Li-Ping Chi & Ya-Rong Zheng & Min-Rui Gao, 2024. "In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Tengfei Ren & Kechao Lu & Feng Tao & Hang Ren & Ni Yan & Jie Miao & Xia Huang & Xiaoyuan Zhang, 2025. "Phosphorus-induced single-atom iron coordination symmetry disruption for superior catalytic ozonation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Tanmay Ghosh & Juan Manuel Arce-Ramos & Wen-Qing Li & Hongwei Yan & See Wee Chee & Alexander Genest & Utkur Mirsaidov, 2022. "Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Hao-Xin Liu & Shan-Qing Li & Wei-Wei Wang & Wen-Zhu Yu & Wu-Jun Zhang & Chao Ma & Chun-Jiang Jia, 2022. "Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Jia-Lan Chen & Xue-Chun Jiang & Li Feng & Jinze Zhu & Jian-Wen Zhao & Jin-Xun Liu & Wei-Xue Li, 2025. "Collectivity effect in cluster catalysis under operational conditions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    17. Zihao Zhang & Jinshu Tian & Yubing Lu & Shize Yang & Dong Jiang & Weixin Huang & Yixiao Li & Jiyun Hong & Adam S. Hoffman & Simon R. Bare & Mark H. Engelhard & Abhaya K. Datye & Yong Wang, 2023. "Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Xiansheng Li & Xing Wang & Arik Beck & Mikalai Artsiusheuski & Qianyu Liu & Qiang Liu & Henrik Eliasson & Frank Krumeich & Ulrich Aschauer & Giovanni Pizzi & Rolf Erni & Jeroen A. Bokhoven & Luca Arti, 2025. "Quantifying electronic and geometric effects on the activity of platinum catalysts for water-gas shift," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Feixiang Zhang & Panshuo Wang & Yandi Zhu & Jinlei Shi & Rui Pang & Xiaoyan Ren & Shunfang Li, 2025. "Highly enhanced room-temperature single-atom catalysis of two-dimensional organic-inorganic multiferroics Cr(half-fluoropyrazine)2 for CO oxidation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47550-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.