IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925008220.html
   My bibliography  Save this article

A review on intermediate temperature electrochemical synthesis of ammonia

Author

Listed:
  • Kaur, Gurpreet
  • Zhu, Haijin
  • Dhawale, Dattatray S.
  • Ju, HyungKuk
  • Biswas, Saheli
  • Kim, Jae Hyung
  • Yoon, Hyung Chul
  • Giddey, Sarbjit

Abstract

Ammonia and its derivatives, such as ammonium nitrite and urea, are important nitrogen sources for fertilizers that are extensively used in modern global agriculture. The current Haber Bosch process of ammonia synthesis contributes significantly to global CO2 emissions (∼450 million metric tons of CO2, which is around ∼1.2% of global CO2 emissions). Due to the increasing availability of renewable energy sources, electrochemical technologies to produce green hydrogen and ammonia have attracted worldwide attention. Using an electrochemical route, ammonia can be synthesized in a single reactor using air and water as the feedstocks, contributing significantly to reducing CO2 emissions. Technology provides various social, economic and environmental benefits if DOE ammonia synthesis rate targets can be achieved for commercialisation of this technology. Notably, it could also be a sustainable route to transport renewable energy in the form of hydrogen derivative liquid fuels in large quantities to areas lean in renewables. Intermediate temperature operations (400–600 °C) are widely recognised for facilitating improved kinetics and offering better energy efficiency for various electrochemical reactions. In this review, recent advancements in the electrochemical ammonia synthesis field have been explicitly covered on solid-state electrolyte materials and electrodes for intermediate temperature operations (400–600 °C). Some challenges regarding ammonia production rates, energy inefficiencies, unresolved issues such as reaction selectivity versus competing side reactions, mechanistic understanding, and lack of standardization in ammonia measurement protocols have been extensively covered, which are essential for further developments in this field.

Suggested Citation

  • Kaur, Gurpreet & Zhu, Haijin & Dhawale, Dattatray S. & Ju, HyungKuk & Biswas, Saheli & Kim, Jae Hyung & Yoon, Hyung Chul & Giddey, Sarbjit, 2025. "A review on intermediate temperature electrochemical synthesis of ammonia," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008220
    DOI: 10.1016/j.apenergy.2025.126092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.