IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60671-y.html
   My bibliography  Save this article

Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface

Author

Listed:
  • Wanru Liao

    (Central South University
    Changsha University of Science and Technology)

  • Jun Wang

    (Central South University
    Changsha University of Science and Technology)

  • Yao Tan

    (Central South University)

  • Xin Zi

    (Central South University)

  • Changxu Liu

    (University of Exeter)

  • Qiyou Wang

    (Central South University)

  • Li Zhu

    (Ludwig-Maximilians-Universität München)

  • Cheng-Wei Kao

    (National Synchrotron Radiation Research Center)

  • Ting-Shan Chan

    (National Synchrotron Radiation Research Center)

  • Hongmei Li

    (Central South University)

  • Yali Zhang

    (Chinese Academy of Sciences)

  • Kang Liu

    (Central South University)

  • Chao Cai

    (Central South University)

  • Junwei Fu

    (Central South University)

  • Beidou Xi

    (Chinese Research Academy of Environmental Sciences)

  • Emiliano Cortés

    (Ludwig-Maximilians-Universität München)

  • Liyuan Chai

    (Central South University)

  • Min Liu

    (Central South University
    Central South University)

Abstract

Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations.

Suggested Citation

  • Wanru Liao & Jun Wang & Yao Tan & Xin Zi & Changxu Liu & Qiyou Wang & Li Zhu & Cheng-Wei Kao & Ting-Shan Chan & Hongmei Li & Yali Zhang & Kang Liu & Chao Cai & Junwei Fu & Beidou Xi & Emiliano Cortés , 2025. "Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60671-y
    DOI: 10.1038/s41467-025-60671-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60671-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60671-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Nasser Alidoust & Guang Bian & Su-Yang Xu & Raman Sankar & Madhab Neupane & Chang Liu & Ilya Belopolski & Dong-Xia Qu & Jonathan D. Denlinger & Fang-Cheng Chou & M. Zahid Hasan, 2014. "Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Suzanne Z. Andersen & Viktor Čolić & Sungeun Yang & Jay A. Schwalbe & Adam C. Nielander & Joshua M. McEnaney & Kasper Enemark-Rasmussen & Jon G. Baker & Aayush R. Singh & Brian A. Rohr & Michael J. St, 2019. "Author Correction: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements," Nature, Nature, vol. 574(7777), pages 5-5, October.
    4. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    5. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Hoang-Long Du & Manjunath Chatti & Rebecca Y. Hodgetts & Pavel V. Cherepanov & Cuong K. Nguyen & Karolina Matuszek & Douglas R. MacFarlane & Alexandr N. Simonov, 2022. "Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency," Nature, Nature, vol. 609(7928), pages 722-727, September.
    7. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    8. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Gong Zhang & Binggong Li & Yanfeng Shi & Qi Zhou & Wen-Jie Fu & Gang Zhou & Jun Ma & Shuo Yin & Weihao Yuan & Shiyu Miao & Qinghua Ji & Jiuhui Qu & Huijuan Liu, 2024. "Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system," Nature Sustainability, Nature, vol. 7(10), pages 1251-1263, October.
    10. Suzanne Z. Andersen & Viktor Čolić & Sungeun Yang & Jay A. Schwalbe & Adam C. Nielander & Joshua M. McEnaney & Kasper Enemark-Rasmussen & Jon G. Baker & Aayush R. Singh & Brian A. Rohr & Michael J. St, 2019. "A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements," Nature, Nature, vol. 570(7762), pages 504-508, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyue Shi & Wei-Hsiang Huang & Ju Rong & Minghui Xie & Qingbo Wa & Ping Zhang & Hainan Wei & Huangyu Zhou & Min-Hsin Yeh & Chih-Wen Pao & Jie Wang & Zhiwei Hu & Xiaohua Yu & Jiwei Ma & Hongfei Cheng, 2025. "Revealing and modulating catalyst reconstruction for highly efficient electrosynthesis of ammonia," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    2. Xianbiao Fu & Aoni Xu & Jakob B. Pedersen & Shaofeng Li & Rokas Sažinas & Yuanyuan Zhou & Suzanne Z. Andersen & Mattia Saccoccio & Niklas H. Deissler & Jon Bjarke Valbæk Mygind & Jakob Kibsgaard & Pet, 2024. "Phenol as proton shuttle and buffer for lithium-mediated ammonia electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Huize Wang & Ranga Rohit Seemakurthi & Gao-Feng Chen & Volker Strauss & Oleksandr Savateev & Guangtong Hai & Liangxin Ding & Núria López & Haihui Wang & Markus Antonietti, 2023. "Laser-induced nitrogen fixation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wei Liu & Mengyang Xia & Chao Zhao & Ben Chong & Jiahe Chen & He Li & Honghui Ou & Guidong Yang, 2024. "Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yan Liu & Jie Wei & Zhengwu Yang & Lirong Zheng & Jiankang Zhao & Zhimin Song & Yuhan Zhou & Jiajie Cheng & Junyang Meng & Zhigang Geng & Jie Zeng, 2024. "Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Lu Chen & Xuze Guan & Zhaofu Fei & Hiroyuki Asakura & Lun Zhang & Zhipeng Wang & Xinlian Su & Zhangyi Yao & Luke L. Keenan & Shusaku Hayama & Matthijs A. Spronsen & Burcu Karagoz & Georg Held & Christ, 2025. "Tuning the selectivity of NH3 oxidation via cooperative electronic interactions between platinum and copper sites," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    11. Po-Wei Huang & Marta C. Hatzell, 2022. "Prospects and good experimental practices for photocatalytic ammonia synthesis," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Paul A. Kempler & Adam C. Nielander, 2023. "Reliable reporting of Faradaic efficiencies for electrocatalysis research," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    15. Xiaoxuan Fan & Zhenyuan Teng & Lupeng Han & Yongjie Shen & Xiyang Wang & Wenqiang Qu & Jialing Song & Zhenlin Wang & Haiyan Duan & Yimin A. Wu & Bin Liu & Dengsong Zhang, 2025. "Boosted charge and proton transfer over ternary Co/Co3O4/CoB for electrochemical nitric oxide reduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Yi Wang & Shuo Wang & Yunfan Fu & Jiaqi Sang & Pengfei Wei & Rongtan Li & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2025. "Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. Rao, Xufeng & Liu, Minmin & Chien, Meifang & Inoue, Chihiro & Zhang, Jiujun & Liu, Yuyu, 2022. "Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Doris Segets & Corina Andronescu & Ulf-Peter Apfel, 2023. "Accelerating CO2 electrochemical conversion towards industrial implementation," Nature Communications, Nature, vol. 14(1), pages 1-5, December.
    20. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60671-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.