IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60043-6.html
   My bibliography  Save this article

Boosted charge and proton transfer over ternary Co/Co3O4/CoB for electrochemical nitric oxide reduction to ammonia

Author

Listed:
  • Xiaoxuan Fan

    (Shanghai University)

  • Zhenyuan Teng

    (City University of Hong Kong)

  • Lupeng Han

    (Shanghai University)

  • Yongjie Shen

    (Hokkaido University)

  • Xiyang Wang

    (University of Waterloo)

  • Wenqiang Qu

    (Shanghai University)

  • Jialing Song

    (Shanghai University)

  • Zhenlin Wang

    (Shanghai University)

  • Haiyan Duan

    (Shanghai University)

  • Yimin A. Wu

    (University of Waterloo)

  • Bin Liu

    (City University of Hong Kong
    City University of Hong Kong)

  • Dengsong Zhang

    (Shanghai University)

Abstract

The electrochemical nitric oxide reduction reaction (NORR) holds a great potential for removing environmental pollutant NO and meanwhile generating high value-added ammonia (NH3). Herein, we tactfully design and synthesize a ternary Co/Co3O4/CoB heterostructure that displays a high NH3 Faradaic efficiency of 98.8% in NORR with an NH3 yield rate of 462.18 µmol cm−2 h−1 (2.31 mol h−1 gcat−1) at −0.5 V versus reversible hydrogen electrode, outperforming most of the reported NORR electrocatalysts to date. The superior NORR performance is attributed to the enhanced charge and proton transfer over the ternary Co/Co3O4/CoB heterostructure. The charge transfer between CoB and Co/Co3O4 yields electron-deficient Co and electron-rich Co3O4. The electron-deficient Co sites boost H2O dissociation to generate *H while the electron-rich low-coordination Co3O4 sites promote NO adsorption. The *H formed on electron-deficient Co sites is more favorable to transfer to electron-rich Co3O4 sites adsorbed with NO, facilitating the selective hydrogenation of NO. This study paves the way for designing and developing highly efficient electrocatalysts for electrochemical reduction of NO to NH3.

Suggested Citation

  • Xiaoxuan Fan & Zhenyuan Teng & Lupeng Han & Yongjie Shen & Xiyang Wang & Wenqiang Qu & Jialing Song & Zhenlin Wang & Haiyan Duan & Yimin A. Wu & Bin Liu & Dengsong Zhang, 2025. "Boosted charge and proton transfer over ternary Co/Co3O4/CoB for electrochemical nitric oxide reduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60043-6
    DOI: 10.1038/s41467-025-60043-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60043-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60043-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shuoshuo Guo & Yongmeng Wu & Changhong Wang & Ying Gao & Mengyang Li & Bin Zhang & Cuibo Liu, 2022. "Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    4. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    5. Donglai Pan & Muthu Austeria P & Shinbi Lee & Ho-sub Bae & Fei He & Geun Ho Gu & Wonyong Choi, 2024. "Integrated electrocatalytic synthesis of ammonium nitrate from dilute NO gas on metal organic frameworks-modified gas diffusion electrodes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Wanru Liao & Jun Wang & Yao Tan & Xin Zi & Changxu Liu & Qiyou Wang & Li Zhu & Cheng-Wei Kao & Ting-Shan Chan & Hongmei Li & Yali Zhang & Kang Liu & Chao Cai & Junwei Fu & Beidou Xi & Emiliano Cortés , 2025. "Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Qiyang Cheng & Sisi Liu & Yanzheng He & Mengfan Wang & Haoqing Ji & Yunfei Huan & Tao Qian & Chenglin Yan & Jianmei Lu, 2025. "Multivariate covalent organic frameworks with tailored electrostatic potential promote nitrate electroreduction to ammonia in acid," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xin Liu & Yan Jiao & Yao Zheng & Mietek Jaroniec & Shi-Zhang Qiao, 2022. "Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Yong Zhang & Feifei Chen & Xinyi Yang & Yiran Guo & Xinghua Zhang & Hong Dong & Weihua Wang & Feng Lu & Zunming Lu & Hui Liu & Hui Liu & Yao Xiao & Yahui Cheng, 2025. "Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Yinghao Li & Chun-Kuo Peng & Yuntong Sun & L. D. Nicole Sui & Yu-Chung Chang & San-Yuan Chen & Yingtang Zhou & Yan-Gu Lin & Jong-Min Lee, 2024. "Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Xiaoqi Lang & Lixue Shi & Zhilun Zhao & Wei Min, 2024. "Probing the structure of water in individual living cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Peng Li & Ya-Ling Jiang & Yana Men & Yu-Zhou Jiao & Shengli Chen, 2025. "Kinetic cation effect in alkaline hydrogen electrocatalysis and double layer proton transfer," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Jin Ming Wang & Qin Yao Zhu & Jeong Heon Lee & Tae Gyun Woo & Yue Xing Zhang & Woo-Dong Jang & Tae Kyu Kim, 2023. "Asymmetric gradient orbital interaction of hetero-diatomic active sites for promoting C − C coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60043-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.