IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59052-2.html
   My bibliography  Save this article

Multivariate covalent organic frameworks with tailored electrostatic potential promote nitrate electroreduction to ammonia in acid

Author

Listed:
  • Qiyang Cheng

    (Soochow University)

  • Sisi Liu

    (Nantong University)

  • Yanzheng He

    (Soochow University)

  • Mengfan Wang

    (Soochow University)

  • Haoqing Ji

    (Soochow University)

  • Yunfei Huan

    (Nantong University
    Changzhou University)

  • Tao Qian

    (Nantong University)

  • Chenglin Yan

    (Soochow University
    Changzhou University)

  • Jianmei Lu

    (Soochow University)

Abstract

The direct synthesis of ammonia from nitrate (NO3–) reduction in acid is a promising approach for industrialization. However, the difficulty arises from the intense competition with the inevitable hydrogen evolution reaction, which is favoured due to the overwhelming protons (H+). Here, we systematically explore and rationally optimize the microenvironment using multivariate covalent organic frameworks (COFs) as catalyst adlayers to promote the nitrate-to-ammonia conversion in acid. With the application of tailored positive electrostatic potential generated over the multivariate COFs, both the mass transfer of NO3– and H+ are regulated via appropriate electrostatic interactions, thus realizing the priority of NO3RR with respect to HER or NO3–-to-NO2–. As a result, an NH3 yield rate of 11.01 mmol h–1 mg–1 and a corresponding Faradaic efficiency of 91.0% are attained, and solid NH4Cl with a high purity of 96.2% is directly collected in acid; therefore, this method provides a practical approach for economically valorising wastewater into valuable ammonia.

Suggested Citation

  • Qiyang Cheng & Sisi Liu & Yanzheng He & Mengfan Wang & Haoqing Ji & Yunfei Huan & Tao Qian & Chenglin Yan & Jianmei Lu, 2025. "Multivariate covalent organic frameworks with tailored electrostatic potential promote nitrate electroreduction to ammonia in acid," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59052-2
    DOI: 10.1038/s41467-025-59052-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59052-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59052-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Qiang Gao & Hemanth Somarajan Pillai & Yang Huang & Shikai Liu & Qingmin Mu & Xue Han & Zihao Yan & Hua Zhou & Qian He & Hongliang Xin & Huiyuan Zhu, 2022. "Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zhen-Yu Wu & Mohammadreza Karamad & Xue Yong & Qizheng Huang & David A. Cullen & Peng Zhu & Chuan Xia & Qunfeng Xiao & Mohsen Shakouri & Feng-Yang Chen & Jung Yoon (Timothy) Kim & Yang Xia & Kimberly , 2021. "Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yuya Ashida & Kazuya Arashiba & Kazunari Nakajima & Yoshiaki Nishibayashi, 2019. "Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water," Nature, Nature, vol. 568(7753), pages 536-540, April.
    6. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yi Wang & Shuo Wang & Yunfan Fu & Jiaqi Sang & Pengfei Wei & Rongtan Li & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2025. "Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Kwiyong Kim & Alexandra Zagalskaya & Jing Lian Ng & Jaeyoung Hong & Vitaly Alexandrov & Tuan Anh Pham & Xiao Su, 2023. "Coupling nitrate capture with ammonia production through bifunctional redox-electrodes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Shi-Nan Zhang & Peng Gao & Qian-Yu Liu & Zhao Zhang & Bing-Liang Leng & Jie-Sheng Chen & Xin-Hao Li, 2024. "Ampere-level reduction of pure nitrate by electron-deficient Ru with K+ ions repelling effect," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Shengnan Sun & Chencheng Dai & Peng Zhao & Shibo Xi & Yi Ren & Hui Ru Tan & Poh Chong Lim & Ming Lin & Caozheng Diao & Danwei Zhang & Chao Wu & Anke Yu & Jie Cheng Jackson Koh & Wei Ying Lieu & Debbie, 2024. "Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Wan Jae Dong & Jan Paul Menzel & Kejian Li & Zhengwei Ye & Zhuoran Long & Ishtiaque Ahmed Navid & Ke R. Yang & Yixin Xiao & Victor S. Batista & Zetian Mi, 2025. "Nitrate reduction to ammonia catalyzed by GaN/Si photoelectrodes with metal clusters," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Kaiyuan Liu & Zhiyi Sun & Xingjie Peng & Xudong Liu & Xiao Zhang & Boran Zhou & Kedi Yu & Zhengbo Chen & Qiang Zhou & Fang Zhang & Yong Wang & Xin Gao & Wenxing Chen & Pengwan Chen, 2025. "Tailoring asymmetric RuCu dual-atom electrocatalyst toward ammonia synthesis from nitrate," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Jiawei Liu & Yifan Xu & Ruihuan Duan & Mingsheng Zhang & Yue Hu & Mengxin Chen & Bo Han & Jinfeng Dong & Carmen Lee & Loku Singgappulige Rosantha Kumara & Okkyun Seo & Jochi Tseng & Takeshi Watanabe &, 2025. "Reaction-driven formation of anisotropic strains in FeTeSe nanosheets boosts low-concentration nitrate reduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Jingnan Wang & Kaiheng Zhao & Yongbin Yao & Fan Xue & Fei Lu & Wensheng Yan & Fangli Yuan & Xi Wang, 2025. "Ferromagnetic Fe-TiO2 spin catalysts for enhanced ammonia electrosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59052-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.