IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58372-7.html
   My bibliography  Save this article

Nitrate reduction to ammonia catalyzed by GaN/Si photoelectrodes with metal clusters

Author

Listed:
  • Wan Jae Dong

    (University of Michigan
    Korea University)

  • Jan Paul Menzel

    (Yale University)

  • Kejian Li

    (University of Michigan)

  • Zhengwei Ye

    (University of Michigan)

  • Zhuoran Long

    (Yale University)

  • Ishtiaque Ahmed Navid

    (University of Michigan)

  • Ke R. Yang

    (Yale University)

  • Yixin Xiao

    (University of Michigan)

  • Victor S. Batista

    (Yale University)

  • Zetian Mi

    (University of Michigan)

Abstract

The development of photoelectrochemical cells for reduction of nitrate to ammonia under solar light is of significant interest for the production of clean chemicals and fuels but has remained a daunting challenge. Here, we investigate various metal catalysts supported on GaN nanowires grown on n+-p Si wafer – an emerging functional platform for scalable artificial photosynthesis – and demonstrate highly stable and efficient photoelectrochemical nitrate reduction reaction. We find that Co and Ni catalysts on GaN/Si exhibit the best performance, with an onset potential >0.3 VRHE and a faradaic efficiency of NH3 of 99% at 0.2 VRHE. These results highlight the advantage of photoelectrochemical system in achieving efficient nitrate reduction under more positive potentials. In-situ measurements and theoretical calculations reveal that the binding modes of the $${{{\rm{NO}}}}_{2}^{{-}}$$ NO 2 − intermediate play a key role in the NH3 synthetic process. These results demonstrate that the rational design of catalysts on photoelectrodes can construct synergistic metal-semiconductor interactions for efficient and stable photoelectrochemical NH3 synthesis.

Suggested Citation

  • Wan Jae Dong & Jan Paul Menzel & Kejian Li & Zhengwei Ye & Zhuoran Long & Ishtiaque Ahmed Navid & Ke R. Yang & Yixin Xiao & Victor S. Batista & Zetian Mi, 2025. "Nitrate reduction to ammonia catalyzed by GaN/Si photoelectrodes with metal clusters," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58372-7
    DOI: 10.1038/s41467-025-58372-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58372-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58372-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeiwan Tan & Byungjun Kang & Kyungmin Kim & Donyoung Kang & Hyungsoo Lee & Sunihl Ma & Gyumin Jang & Hyungsuk Lee & Jooho Moon, 2022. "Hydrogel protection strategy to stabilize water-splitting photoelectrodes," Nature Energy, Nature, vol. 7(6), pages 537-547, June.
    2. Zhen-Yu Wu & Mohammadreza Karamad & Xue Yong & Qizheng Huang & David A. Cullen & Peng Zhu & Chuan Xia & Qunfeng Xiao & Mohsen Shakouri & Feng-Yang Chen & Jung Yoon (Timothy) Kim & Yang Xia & Kimberly , 2021. "Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Wanyu Deng & Peng Zhang & Brian Seger & Jinlong Gong, 2022. "Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Wan Jae Dong & Yixin Xiao & Ke R. Yang & Zhengwei Ye & Peng Zhou & Ishtiaque Ahmed Navid & Victor S. Batista & Zetian Mi, 2023. "Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Kwiyong Kim & Alexandra Zagalskaya & Jing Lian Ng & Jaeyoung Hong & Vitaly Alexandrov & Tuan Anh Pham & Xiao Su, 2023. "Coupling nitrate capture with ammonia production through bifunctional redox-electrodes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Shengnan Sun & Chencheng Dai & Peng Zhao & Shibo Xi & Yi Ren & Hui Ru Tan & Poh Chong Lim & Ming Lin & Caozheng Diao & Danwei Zhang & Chao Wu & Anke Yu & Jie Cheng Jackson Koh & Wei Ying Lieu & Debbie, 2024. "Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Qiyang Cheng & Sisi Liu & Yanzheng He & Mengfan Wang & Haoqing Ji & Yunfei Huan & Tao Qian & Chenglin Yan & Jianmei Lu, 2025. "Multivariate covalent organic frameworks with tailored electrostatic potential promote nitrate electroreduction to ammonia in acid," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yi Wang & Shuo Wang & Yunfan Fu & Jiaqi Sang & Pengfei Wei & Rongtan Li & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2025. "Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Jiawei Liu & Yifan Xu & Ruihuan Duan & Mingsheng Zhang & Yue Hu & Mengxin Chen & Bo Han & Jinfeng Dong & Carmen Lee & Loku Singgappulige Rosantha Kumara & Okkyun Seo & Jochi Tseng & Takeshi Watanabe &, 2025. "Reaction-driven formation of anisotropic strains in FeTeSe nanosheets boosts low-concentration nitrate reduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Zengxia Pei & Hao Tan & Jinxing Gu & Linguo Lu & Xin Zeng & Tianqi Zhang & Cheng Wang & Luyao Ding & Patrick J. Cullen & Zhongfang Chen & Shenlong Zhao, 2023. "A polymeric hydrogel electrocatalyst for direct water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jingnan Wang & Kaiheng Zhao & Yongbin Yao & Fan Xue & Fei Lu & Wensheng Yan & Fangli Yuan & Xi Wang, 2025. "Ferromagnetic Fe-TiO2 spin catalysts for enhanced ammonia electrosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    20. Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58372-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.