IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63646-1.html
   My bibliography  Save this article

Looping metal-support interaction in heterogeneous catalysts during redox reactions

Author

Listed:
  • Yue Pan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shiyu Zhen

    (Tsinghua University)

  • Xiaozhi Liu

    (Chinese Academy of Sciences)

  • Mengshu Ge

    (Chinese Academy of Sciences)

  • Jianxiong Zhao

    (Chinese Academy of Sciences)

  • Lin Gu

    (Tsinghua University)

  • Dan Zhou

    (DENSsolutions B.V.
    Leibniz Institute for Crystal Growth)

  • Liang Zhang

    (Tsinghua University)

  • Dong Su

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Metal-support interfaces fundamentally govern the catalytic performance of heterogeneous systems through complex interactions. Here, utilizing operando transmission electron microscopy, we uncover a looping metal-support interaction in NiFe-Fe3O4 catalysts during the hydrogen oxidation reaction. At the NiFe-Fe3O4 interfaces, lattice oxygens react with NiFe-activated H atoms, gradually sacrificing themselves and resulting in dynamically migrating interfaces. Meanwhile, reduced iron atoms migrate to the {111} surface of Fe3O4 support and react with oxygen molecules. Consequently, the hydrogen oxidation reaction separates spatially on a single nanoparticle and is intrinsically coupled with the redox reaction of the Fe3O4 support through the dynamic migration of metal-support interfaces. Our work provides previously unidentified mechanistic insight into metal-support interactions and underscores the transformative potential of operando methodologies for studying atomic-scale dynamics.

Suggested Citation

  • Yue Pan & Shiyu Zhen & Xiaozhi Liu & Mengshu Ge & Jianxiong Zhao & Lin Gu & Dan Zhou & Liang Zhang & Dong Su, 2025. "Looping metal-support interaction in heterogeneous catalysts during redox reactions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63646-1
    DOI: 10.1038/s41467-025-63646-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63646-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63646-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arik Beck & Xing Huang & Luca Artiglia & Maxim Zabilskiy & Xing Wang & Przemyslaw Rzepka & Dennis Palagin & Marc-Georg Willinger & Jeroen A. van Bokhoven, 2020. "The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Shengnan Yue & C. S. Praveen & Alexander Klyushin & Alexey Fedorov & Masahiro Hashimoto & Qian Li & Travis Jones & Panpan Liu & Wenqian Yu & Marc-Georg Willinger & Xing Huang, 2024. "Redox dynamics and surface structures of an active palladium catalyst during methane oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yuri Suchorski & Martin Datler & Ivan Bespalov & Johannes Zeininger & Michael Stöger-Pollach & Johannes Bernardi & Henrik Grönbeck & Günther Rupprechter, 2018. "Visualizing catalyst heterogeneity by a multifrequential oscillating reaction," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    4. Jing Cao & Ali Rinaldi & Milivoj Plodinec & Xing Huang & Elena Willinger & Adnan Hammud & Stefan Hieke & Sebastian Beeg & Luca Gregoratti & Claudiu Colbea & Robert Schlögl & Markus Antonietti & Mark G, 2020. "In situ observation of oscillatory redox dynamics of copper," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqian Yu & Shengnan Yue & Minghe Yang & Masahiro Hashimoto & Panpan Liu & Li Zhu & Wangjing Xie & Travis Jones & Marc Willinger & Xing Huang, 2025. "Operando TEM study of a working copper catalyst during ethylene oxidation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Jian Zhang & Dezhi Zhu & Jianfeng Yan & Chang-An Wang, 2021. "Strong metal-support interactions induced by an ultrafast laser," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Alexander Genest & Carla Weigl & Günther Rupprechter, 2023. "Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jan Knudsen & Tamires Gallo & Virgínia Boix & Marie Døvre Strømsheim & Giulio D’Acunto & Christopher Goodwin & Harald Wallander & Suyun Zhu & Markus Soldemo & Patrick Lömker & Filippo Cavalca & Mattia, 2021. "Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Tanmay Ghosh & Juan Manuel Arce-Ramos & Wen-Qing Li & Hongwei Yan & See Wee Chee & Alexander Genest & Utkur Mirsaidov, 2022. "Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Shengnan Yue & C. S. Praveen & Alexander Klyushin & Alexey Fedorov & Masahiro Hashimoto & Qian Li & Travis Jones & Panpan Liu & Wenqian Yu & Marc-Georg Willinger & Xing Huang, 2024. "Redox dynamics and surface structures of an active palladium catalyst during methane oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. P. Winkler & J. Zeininger & M. Raab & Y. Suchorski & A. Steiger-Thirsfeld & M. Stöger-Pollach & M. Amati & L. Gregoratti & H. Grönbeck & G. Rupprechter, 2021. "Coexisting multi-states in catalytic hydrogen oxidation on rhodium," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Keita Tokuda & Günther Rupprechter, 2023. "Emergence of chaos in a compartmentalized catalytic reaction nanosystem," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63646-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.