IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58609-5.html
   My bibliography  Save this article

The overlapping global distribution of dengue, chikungunya, Zika and yellow fever

Author

Listed:
  • Ahyoung Lim

    (London School of Hygiene & Tropical Medicine
    London School of Hygiene & Tropical Medicine)

  • Freya M. Shearer

    (The University of Melbourne
    Perth Children’s Hospital)

  • Kara Sewalk

    (Boston Children’s Hospital)

  • David M. Pigott

    (University of Washington
    University of Washington)

  • Joseph Clarke

    (University of Cambridge)

  • Azhar Ghouse

    (London School of Hygiene & Tropical Medicine
    Ministry of Health)

  • Ciara Judge

    (London School of Hygiene & Tropical Medicine
    London School of Hygiene & Tropical Medicine)

  • Hyolim Kang

    (London School of Hygiene & Tropical Medicine
    London School of Hygiene & Tropical Medicine
    Nagasaki University)

  • Jane P. Messina

    (University of Oxford
    University of Oxford)

  • Moritz U. G. Kraemer

    (University of Oxford
    University of Oxford)

  • Katy A. M. Gaythorpe

    (Imperial College London)

  • William M. Souza

    (College of Medicine)

  • Elaine O. Nsoesie

    (Boston University)

  • Michael Celone

    (University of Washington)

  • Nuno Faria

    (Imperial College London)

  • Sadie J. Ryan

    (University of Florida)

  • Ingrid B. Rabe

    (World Health Organization)

  • Diana P. Rojas

    (World Health Organization)

  • Simon I. Hay

    (University of Washington
    University of Washington)

  • John S. Brownstein

    (Harvard Medical School)

  • Nick Golding

    (The University of Melbourne
    Perth Children’s Hospital
    Curtin University)

  • Oliver J. Brady

    (London School of Hygiene & Tropical Medicine
    London School of Hygiene & Tropical Medicine)

Abstract

Arboviruses transmitted mainly by Aedes (Stegomyia) aegypti and Ae. albopictus, including dengue, chikungunya, and Zika viruses, and yellow fever virus in urban settings, pose an escalating global threat. Existing risk maps, often hampered by surveillance biases, may underestimate or misrepresent the true distribution of these diseases and do not incorporate epidemiological similarities despite shared vector species. We address this by generating new global environmental suitability maps for Aedes-borne arboviruses using a multi-disease ecological niche model with a nested surveillance model fit to a dataset of over 21,000 occurrence points. This reveals a convergence in suitability around a common global distribution with recent spread of chikungunya and Zika closely aligning with areas suitable for dengue. We estimate that 5.66 (95% confidence interval 5.64-5.68) billion people live in areas suitable for dengue, chikungunya and Zika and 1.54 (1.53-1.54) billion people for yellow fever. We find large national and subnational differences in surveillance capabilities with higher income more accessible areas more likely to detect, diagnose and report viral diseases, which may have led to overestimation of risk in the United States and Europe. When combined with estimates of uncertainty, these suitability maps can be used by ministries of health to target limited surveillance and intervention resources in new strategies against these emerging threats.

Suggested Citation

  • Ahyoung Lim & Freya M. Shearer & Kara Sewalk & David M. Pigott & Joseph Clarke & Azhar Ghouse & Ciara Judge & Hyolim Kang & Jane P. Messina & Moritz U. G. Kraemer & Katy A. M. Gaythorpe & William M. S, 2025. "The overlapping global distribution of dengue, chikungunya, Zika and yellow fever," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58609-5
    DOI: 10.1038/s41467-025-58609-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58609-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58609-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. David I Warton & Ian W Renner & Daniel Ramp, 2013. "Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    3. Jing Gao & Brian C. O’Neill, 2020. "Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Grimmett, Liam & Whitsed, Rachel & Horta, Ana, 2020. "Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics," Ecological Modelling, Elsevier, vol. 431(C).
    5. Erin A Mordecai & Jeremy M Cohen & Michelle V Evans & Prithvi Gudapati & Leah R Johnson & Catherine A Lippi & Kerri Miazgowicz & Courtney C Murdock & Jason R Rohr & Sadie J Ryan & Van Savage & Marta S, 2017. "Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohsin & Abdalgader, Tarteel & Pedersen, Michael & Zhang, Lai, 2025. "Interactive effects of climate change and human mobility on dengue transmission," Ecological Modelling, Elsevier, vol. 499(C).
    2. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    3. Ana C Piovezan-Borges & Francisco Valente-Neto & Wanderli P Tadei & Neusa Hamada & Fabio O Roque, 2020. "Simulated climate change, but not predation risk, accelerates Aedes aegypti emergence in a microcosm experiment in western Amazonia," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.
    4. Yu-Chieh Cheng & Fang-Jing Lee & Ya-Ting Hsu & Eric V Slud & Chao A Hsiung & Chun-Hong Chen & Ching-Len Liao & Tzai-Hung Wen & Chiu-Wen Chang & Jui-Hun Chang & Hsiao-Yu Wu & Te-Pin Chang & Pei-Sheng L, 2020. "Real-time dengue forecast for outbreak alerts in Southern Taiwan," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(7), pages 1-18, July.
    5. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    6. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    7. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    9. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    10. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    11. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    12. Devin Kirk & Samantha Straus & Marissa L Childs & Mallory Harris & Lisa Couper & T Jonathan Davies & Coreen Forbes & Alyssa-Lois Gehman & Maya L Groner & Christopher Harley & Kevin D Lafferty & Van Sa, 2024. "Temperature impacts on dengue incidence are nonlinear and mediated by climatic and socioeconomic factors: A meta-analysis," PLOS Climate, Public Library of Science, vol. 3(3), pages 1-18, March.
    13. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
    14. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    15. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    16. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    17. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    18. Emma Taylor-Salmon & Verity Hill & Lauren M. Paul & Robert T. Koch & Mallery I. Breban & Chrispin Chaguza & Afeez Sodeinde & Joshua L. Warren & Sylvia Bunch & Natalia Cano & Marshall Cone & Sarah Eyso, 2024. "Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Tuan Nguyen Tran, 2024. "Comparing the process of converting land use purposes between socio-economic regions in Vietnam from 2007 to 2020," Environmental & Socio-economic Studies, Sciendo, vol. 12(3), pages 51-62.
    20. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58609-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.