IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58492-0.html
   My bibliography  Save this article

Engineering biology applications for environmental solutions: potential and challenges

Author

Listed:
  • David J. Lea-Smith

    (University of East Anglia)

  • Francis Hassard

    (Cranfield University)

  • Frederic Coulon

    (Cranfield University)

  • Natalie Partridge

    (GitLife Biotech Ltd)

  • Louise Horsfall

    (University of Edinburgh)

  • Kyle D. J. Parker

    (University of Edinburgh)

  • Robert D. J. Smith

    (University of Edinburgh)

  • Ronan R. McCarthy

    (Brunel University London)

  • Boyd McKew

    (University of Essex)

  • Tony Gutierrez

    (Heriot-Watt University)

  • Vinod Kumar

    (Cranfield University)

  • Gabriella Dotro

    (Cranfield University)

  • Zhugen Yang

    (Cranfield University)

  • Natalio Krasnogor

    (GitLife Biotech Ltd
    Newcastle University)

Abstract

Engineering biology applies synthetic biology to address global environmental challenges like bioremediation, biosequestration, pollutant monitoring, and resource recovery. This perspective outlines innovations in engineering biology, its integration with other technologies (e.g., nanotechnology, IoT, AI), and commercial ventures leveraging these advancements. We also discuss commercialisation and scaling challenges, biosafety and biosecurity considerations including biocontainment strategies, social and political dimensions, and governance issues that must be addressed for successful real-world implementation. Finally, we highlight future perspectives and propose strategies to overcome existing hurdles, aiming to accelerate the adoption of engineering biology for environmental solutions.

Suggested Citation

  • David J. Lea-Smith & Francis Hassard & Frederic Coulon & Natalie Partridge & Louise Horsfall & Kyle D. J. Parker & Robert D. J. Smith & Ronan R. McCarthy & Boyd McKew & Tony Gutierrez & Vinod Kumar & , 2025. "Engineering biology applications for environmental solutions: potential and challenges," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58492-0
    DOI: 10.1038/s41467-025-58492-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58492-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58492-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Van Noorden, 2010. "Demand for malaria drug soars," Nature, Nature, vol. 466(7307), pages 672-673, August.
    2. Jonathan Tellechea-Luzardo & Leanne Hobbs & Elena Velázquez & Lenka Pelechova & Simon Woods & Víctor Lorenzo & Natalio Krasnogor, 2022. "Versioning biological cells for trustworthy cell engineering," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ribeiro, Barbara Esteves, 2013. "Beyond commonplace biofuels: Social aspects of ethanol," Energy Policy, Elsevier, vol. 57(C), pages 355-362.
    4. Christopher A. Voigt, 2020. "Synthetic biology 2020–2030: six commercially-available products that are changing our world," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Dalton R. George & Mark Danciu & Peter W. Davenport & Matthew R. Lakin & James Chappell & Emma K. Frow, 2024. "A bumpy road ahead for genetic biocontainment," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    6. Marcelo Sant'Anna, 2024. "How Green Is Sugarcane Ethanol?," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 202-216, January.
    7. Alec A. K. Nielsen & Christopher A. Voigt, 2018. "Deep learning to predict the lab-of-origin of engineered DNA," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Sierra M. Brooks & Hal S. Alper, 2021. "Applications, challenges, and needs for employing synthetic biology beyond the lab," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Tang & Jennifer Kuzma & Xi Zhang & Xinyu Song & Yin Li & Hongxu Liu & Guangyuan Hu, 2023. "Synthetic biology and governance research in China: a 40-year evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5293-5310, September.
    2. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    3. Gamborg, Christian & Anker, Helle Tegner & Sandøe, Peter, 2014. "Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity," Energy Policy, Elsevier, vol. 69(C), pages 326-333.
    4. Fedorova, Elena & Pongrácz, Eva, 2019. "Cumulative social effect assessment framework to evaluate the accumulation of social sustainability benefits of regional bioenergy value chains," Renewable Energy, Elsevier, vol. 131(C), pages 1073-1088.
    5. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. repec:plo:pone00:0079650 is not listed on IDEAS
    7. James Karabin & Izaac Mansfield & Emma K Frow, 2021. "Exploring presentations of sustainability by US synthetic biology companies," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
    8. Lei Pei & Michele Garfinkel & Markus Schmidt, 2022. "Bottlenecks and opportunities for synthetic biology biosafety standards," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    9. Hideto Mori & Nozomu Yachie, 2022. "A framework to efficiently describe and share reproducible DNA materials and construction protocols," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Oliver M. Crook & Kelsey Lane Warmbrod & Greg Lipstein & Christine Chung & Christopher W. Bakerlee & T. Greg McKelvey & Shelly R. Holland & Jacob L. Swett & Kevin M. Esvelt & Ethan C. Alley & William , 2022. "Analysis of the first genetic engineering attribution challenge," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Gilio, Leandro & Azanha Ferraz Dias de Moraes, Márcia, 2016. "Sugarcane industry's socioeconomic impact in São Paulo, Brazil: A spatial dynamic panel approach," Energy Economics, Elsevier, vol. 58(C), pages 27-37.
    12. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    13. Benjamin D Lee & Anthony Gitter & Casey S Greene & Sebastian Raschka & Finlay Maguire & Alexander J Titus & Michael D Kessler & Alexandra J Lee & Marc G Chevrette & Paul Allen Stewart & Thiago Britto-, 2022. "Ten quick tips for deep learning in biology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-20, March.
    14. Rafael Araujo & Vitor Possebom, 2025. "Potato Potahto in the FAO-GAEZ Productivity Measures? Nonclassical Measurement Error with Multiple Proxies," Papers 2502.12141, arXiv.org, revised May 2025.
    15. Andreia Marques Postal & Gabriela Benatti & Mar Palmeros Parada & Lotte Asveld & Patrícia Osseweijer & José Maria F. J. Da Silveira, 2020. "The Role of Participation in the Responsible Innovation Framework for Biofuels Projects: Can It Be Assessed?," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    16. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    17. Jonathan Tellechea-Luzardo & Leanne Hobbs & Elena Velázquez & Lenka Pelechova & Simon Woods & Víctor Lorenzo & Natalio Krasnogor, 2022. "Versioning biological cells for trustworthy cell engineering," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Na Tian & Shuoqian Liu & Hiengming Ting & Jianan Huang & Sander Van Der Krol & Harro Bouwmeester & Zhonghua Liu, 2013. "An improved Agrobacterium tumefaciens mediated transformation of Artemisia annua L. by using stem internodes as explants," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 49(3), pages 123-129.
    19. Carlos Barajas & Hsin-Ho Huang & Jesse Gibson & Luis Sandoval & Domitilla Vecchio, 2022. "Feedforward growth rate control mitigates gene activation burden," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. William Mo & Christopher A. Vaiana & Chris J. Myers, 2024. "The need for adaptability in detection, characterization, and attribution of biosecurity threats," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    21. Goetz, Ariane & Searchinger, Tim & Beringer, Tim & German, Laura & McKay, Ben & Oliveira, Gustavo de L.T. & Hunsberger, Carol, 2018. "Reply to commentary on the special issue Scaling up biofuels? A critical look at expectations, performance and governance," Energy Policy, Elsevier, vol. 118(C), pages 658-665.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58492-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.