IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58427-9.html
   My bibliography  Save this article

Big data show idiosyncratic patterns and rates of geomorphic river mobility

Author

Listed:
  • Richard J. Boothroyd

    (University of Glasgow
    University of Liverpool)

  • Richard D. Williams

    (University of Glasgow)

  • Trevor B. Hoey

    (Brunel University London)

  • Gary J. Brierley

    (University of Auckland)

  • Pamela L. M. Tolentino

    (University of Glasgow
    University of the Philippines)

  • Esmael L. Guardian

    (University of the Philippines)

  • Juan C. M. O. Reyes

    (University of the Philippines)

  • Cathrine J. Sabillo

    (University of the Philippines)

  • Laura Quick

    (University of Glasgow)

  • John E. G. Perez

    (University of the Philippines
    University of Vienna)

  • Carlos P. C. David

    (University of the Philippines)

Abstract

Big data present unprecedented opportunities to test long-standing theories regarding patterns and rates of geomorphic river adjustments. Here, we use locational probabilities derived from Landsat imagery (1988-2019) to quantify the dynamics of 600 km2 of riverbed in 10 Philippine catchments. Analysis of lateral adjustments reveals spatially non-uniform variability in along-valley patterns of geomorphic river mobility, with zones of relative stability interspersed with zones of relative instability. Hotspots of mobility vary in magnitude, size and location between catchments. We could not identify monotonic relationships between local factors (active channel width, valley floor width and confinement ratio) and mobility. No relation between the channel pattern type and rates of adjustment was evident. We contend that satellite-derived locational probabilities provide a spatially continuous dynamic metric that can help unravel and contextualise forms and rates of geomorphic river adjustment, thereby helping to derive insights into idiosyncrasies of river behaviour in dynamic landscapes.

Suggested Citation

  • Richard J. Boothroyd & Richard D. Williams & Trevor B. Hoey & Gary J. Brierley & Pamela L. M. Tolentino & Esmael L. Guardian & Juan C. M. O. Reyes & Cathrine J. Sabillo & Laura Quick & John E. G. Pere, 2025. "Big data show idiosyncratic patterns and rates of geomorphic river mobility," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58427-9
    DOI: 10.1038/s41467-025-58427-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58427-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58427-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    3. J. M. Valenza & D. A. Edmonds & T. Hwang & S. Roy, 2020. "Downstream changes in river avulsion style are related to channel morphology," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Andrew Smith & Paul D. Bates & Oliver Wing & Christopher Sampson & Niall Quinn & Jeff Neal, 2019. "New estimates of flood exposure in developing countries using high-resolution population data," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Author Correction: Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    6. Björn Nyberg & Gijs Henstra & Rob L. Gawthorpe & Rodmar Ravnås & Juha Ahokas, 2023. "Global scale analysis on the extent of river channel belts," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Mark Bawa Malgwi & Jorge Alberto Ramirez & Andreas Zischg & Markus Zimmermann & Stefan Schürmann & Margreth Keiler, 2021. "A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1781-1805, September.
    3. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    4. Florian Reiner & Martin Brandt & Xiaoye Tong & David Skole & Ankit Kariryaa & Philippe Ciais & Andrew Davies & Pierre Hiernaux & Jérôme Chave & Maurice Mugabowindekwe & Christian Igel & Stefan Oehmcke, 2023. "More than one quarter of Africa’s tree cover is found outside areas previously classified as forest," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Gianluca Biggi & Martina Iori & Julia Mazzei & Andrea Mina, 2024. "Green Intelligence: The AI content of green technologies," LEM Papers Series 2024/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Max Tesselaar & W. J. Wouter Botzen & Timothy Tiggeloven & Jeroen C. J. H. Aerts, 2023. "Flood insurance is a driver of population growth in European floodplains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Aaron Opdyke & Khadija Fatima, 2024. "Comparing the suitability of global gridded population datasets for local landslide risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2415-2432, February.
    8. Wang, Yangjun & Liu, Kefeng & Zhang, Ren & Qian, Longxia & Shan, Yulong, 2021. "Feasibility of the Northeast Passage: The role of vessel speed, route planning, and icebreaking assistance determined by sea-ice conditions for the container shipping market during 2020–2030," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Richards, Daniel Rex & Lavorel, Sandra, 2022. "Integrating social media data and machine learning to analyse scenarios of landscape appreciation," Ecosystem Services, Elsevier, vol. 55(C).
    10. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    11. Michele Fornino & Mahmut Kutlukaya & Caterina Lepor & Javier Uruñuela López, 2025. "A multi-country study of forward-looking economic losses from floods and tropical cyclones," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Addressing climate change data needs: the central banks' contribution, volume 63, Bank for International Settlements.
    12. Fuzhi Lu & Huayu Lu & Yao Gu & Pengyu Lin & Zhengyao Lu & Qiong Zhang & Hongyan Zhang & Fan Yang & Xiaoyi Dong & Shuangwen Yi & Deliang Chen & Francesco S. R. Pausata & Maya Ben-Yami & Jennifer V. Mec, 2025. "Tipping point-induced abrupt shifts in East Asian hydroclimate since the Last Glacial Maximum," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    13. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    14. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).
    16. Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.
    17. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    18. Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Guanyin Shuai & Yan Zhou & Jingli Shao & Yali Cui & Qiulan Zhang & Chaowei Jin & Shuyuan Xu, 2024. "Comparison of Multiple Machine Learning Methods for Correcting Groundwater Levels Predicted by Physics-Based Models," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    20. Jie Fan & Baoyin Liu & Xiaodong Ming & Yong Sun & Lianjie Qin, 2022. "The amplification effect of unreasonable human behaviours on natural disasters," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58427-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.