IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58229-z.html
   My bibliography  Save this article

Fatigue damage reduction in hydropower startups with machine learning

Author

Listed:
  • Till Muser

    (EPFL & ETH Zürich)

  • Ekaterina Krymova

    (EPFL & ETH Zürich)

  • Alessandro Morabito

    (École Polytechnique Fédérale de Lausanne)

  • Martin Seydoux

    (École Polytechnique Fédérale de Lausanne)

  • Elena Vagnoni

    (École Polytechnique Fédérale de Lausanne)

Abstract

As the global shift towards renewable energy accelerates, achieving stability in power systems is crucial. Hydropower accounts for approximately 17% of energy produced worldwide, and with its capacity for active and reactive power regulation, is well-suited to provide necessary ancillary services. However, as demand for these services rises, hydropower systems must adapt to handle rapid dynamic changes and off-design conditions. Fatigue damage in hydraulic machines, driven by fluctuating loads and varying mechanical stresses, is especially prominent during the transient start-up of the machine. In this study, we introduce a data-driven approach to identify transient start-up trajectories that minimize fatigue damage. We optimize the trajectory by leveraging a machine learning model, trained on experimental stress data of reduced-scale model turbines. Numerical and experimental results confirm that our optimized trajectory significantly reduces start-up damage, representing a meaningful advancement in hydropower operations, maintenance, and the safe transition to higher operational flexibility.

Suggested Citation

  • Till Muser & Ekaterina Krymova & Alessandro Morabito & Martin Seydoux & Elena Vagnoni, 2025. "Fatigue damage reduction in hydropower startups with machine learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58229-z
    DOI: 10.1038/s41467-025-58229-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58229-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58229-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    2. Jean Pisani-Ferry & Simone Tagliapietra & Georg Zachmann, 2023. "A new governance framework to safeguard the European Green Deal," Bruegel Policy Brief node_9327, Bruegel.
    3. Seydoux, Martin & Vagnoni, Elena & Nicolet, Christophe & Paolone, Mario, 2024. "On the prediction of the induced damage by the start-up sequence of Francis turbines: On operational resilience framework," Renewable Energy, Elsevier, vol. 228(C).
    4. Vivien Foster & Philipp A. Trotter & Sven Werner & Melin Niedermayer & Yacob Mulugetta & Ploy Achakulwisut & Aoife Brophy & Navroz K. Dubash & Sam Fankhauser & Adam Hawkes & Stephanie Hirmer & Stuart , 2024. "Development transitions for fossil fuel-producing low and lower–middle income countries in a carbon-constrained world," Nature Energy, Nature, vol. 9(3), pages 242-250, March.
    5. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    6. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    7. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dollon, Q. & Antoni, J. & Tahan, A. & Gagnon, M. & Monette, C., 2021. "Operational Modal Analysis of hydroelectric turbines using an order based likelihood approach," Renewable Energy, Elsevier, vol. 165(P1), pages 799-811.
    2. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    3. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    5. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    6. Sorin-Ioan Lupa & Martin Gagnon & Sebastian Muntean & Georges Abdul-Nour, 2022. "The Impact of Water Hammer on Hydraulic Power Units," Energies, MDPI, vol. 15(4), pages 1-27, February.
    7. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    8. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    9. Prasasti, E.B. & Joseph, M. & Miao, X. & Zangeneh, M. & Terheiden, K., 2024. "Design of shaft- and rim-driven contra-rotating reversible pump-turbine to optimize novel low-head pumped hydro energy storages," Energy, Elsevier, vol. 306(C).
    10. Othman, Mohd Edzham Fareez & Sidek, Lariyah Mohd & Basri, Hidayah & El-Shafie, Ahmed & Ahmed, Ali Najah, 2025. "Climate challenges for sustainable hydropower development and operational resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    11. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    12. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    13. Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.
    14. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    15. Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
    16. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    17. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    18. Lin, Fawei & Luan, Chujun & Mao, Huiyi & Zhong, Chenxu & Han, Xinlu & Chen, Guanyi & Che, Lei, 2025. "NH3 assisted catalytic pyrolysis of low-grade fuel oil with energy self-supply to acquire high-quality products," Applied Energy, Elsevier, vol. 381(C).
    19. Lang, Xiao & Nilsson, Håkan & Mao, Wengang, 2024. "Analysis of hydropower plant guide bearing vibrations by machine learning based identification of steady operations," Renewable Energy, Elsevier, vol. 236(C).
    20. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58229-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.