IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45374-0.html
   My bibliography  Save this article

High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes

Author

Listed:
  • Ai-Min Li

    (University of Maryland)

  • Zeyi Wang

    (University of Maryland)

  • Travis P. Pollard

    (DEVCOM Army Research Laboratory)

  • Weiran Zhang

    (University of Maryland)

  • Sha Tan

    (Brookhaven National Laboratory)

  • Tianyu Li

    (University of Maryland)

  • Chamithri Jayawardana

    (Department of Chemistry, University of Rhode Island)

  • Sz-Chian Liou

    (University of Maryland)

  • Jiancun Rao

    (University of Maryland)

  • Brett L. Lucht

    (Department of Chemistry, University of Rhode Island)

  • Enyuan Hu

    (Brookhaven National Laboratory)

  • Xiao-Qing Yang

    (Brookhaven National Laboratory)

  • Oleg Borodin

    (DEVCOM Army Research Laboratory)

  • Chunsheng Wang

    (University of Maryland)

Abstract

Micro-sized silicon anodes can significantly increase the energy density of lithium-ion batteries with low cost. However, the large silicon volume changes during cycling cause cracks for both organic-inorganic interphases and silicon particles. The liquid electrolytes further penetrate the cracked silicon particles and reform the interphases, resulting in huge electrode swelling and quick capacity decay. Here we resolve these challenges by designing a high-voltage electrolyte that forms silicon-phobic interphases with weak bonding to lithium-silicon alloys. The designed electrolyte enables micro-sized silicon anodes (5 µm, 4.1 mAh cm−2) to achieve a Coulombic efficiency of 99.8% and capacity of 2175 mAh g−1 for >250 cycles and enable 100 mAh LiNi0.8Co0.15Al0.05O2 pouch full cells to deliver a high capacity of 172 mAh g−1 for 120 cycles with Coulombic efficiency of >99.9%. The high-voltage electrolytes that are capable of forming silicon-phobic interphases pave new ways for the commercialization of lithium-ion batteries using micro-sized silicon anodes.

Suggested Citation

  • Ai-Min Li & Zeyi Wang & Travis P. Pollard & Weiran Zhang & Sha Tan & Tianyu Li & Chamithri Jayawardana & Sz-Chian Liou & Jiancun Rao & Brett L. Lucht & Enyuan Hu & Xiao-Qing Yang & Oleg Borodin & Chun, 2024. "High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45374-0
    DOI: 10.1038/s41467-024-45374-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45374-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45374-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingquan Huang & Jiangxuan Song & Yue Gao & Daiwei Wang & Shuai Liu & Shufu Peng & Courtney Usher & Alan Goliaszewski & Donghai Wang, 2019. "Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Jiangfeng Qian & Wesley A. Henderson & Wu Xu & Priyanka Bhattacharya & Mark Engelhard & Oleg Borodin & Ji-Guang Zhang, 2015. "High rate and stable cycling of lithium metal anode," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    3. Chuanfang (John) Zhang & Sang-Hoon Park & Andrés Seral‐Ascaso & Sebastian Barwich & Niall McEvoy & Conor S. Boland & Jonathan N. Coleman & Yury Gogotsi & Valeria Nicolosi, 2019. "High capacity silicon anodes enabled by MXene viscous aqueous ink," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Josefine D. McBrayer & Marco-Tulio F. Rodrigues & Maxwell C. Schulze & Daniel P. Abraham & Christopher A. Apblett & Ira Bloom & Gerard Michael Carroll & Andrew M. Colclasure & Chen Fang & Katharine L., 2021. "Calendar aging of silicon-containing batteries," Nature Energy, Nature, vol. 6(9), pages 866-872, September.
    6. Chongyin Yang & Ji Chen & Xiao Ji & Travis P. Pollard & Xujie Lü & Cheng-Jun Sun & Singyuk Hou & Qi Liu & Cunming Liu & Tingting Qing & Yingqi Wang & Oleg Borodin & Yang Ren & Kang Xu & Chunsheng Wang, 2019. "Author Correction: Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite," Nature, Nature, vol. 570(7762), pages 65-65, June.
    7. Tianyu Zhu & Hadas Sternlicht & Yang Ha & Chen Fang & Dongye Liu & Benjamin H. Savitzky & Xiao Zhao & Yanying Lu & Yanbao Fu & Colin Ophus & Chenhui Zhu & Wanli Yang & Andrew M. Minor & Gao Liu, 2023. "Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries," Nature Energy, Nature, vol. 8(2), pages 129-137, February.
    8. Yuzhang Li & Kai Yan & Hyun-Wook Lee & Zhenda Lu & Nian Liu & Yi Cui, 2016. "Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes," Nature Energy, Nature, vol. 1(2), pages 1-1, February.
    9. In Hyuk Son & Jong Hwan Park & Soonchul Kwon & Seongyong Park & Mark H. Rümmeli & Alicja Bachmatiuk & Hyun Jae Song & Junhwan Ku & Jang Wook Choi & Jae-man Choi & Seok-Gwang Doo & Hyuk Chang, 2015. "Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    10. Chongyin Yang & Ji Chen & Xiao Ji & Travis P. Pollard & Xujie Lü & Cheng-Jun Sun & Singyuk Hou & Qi Liu & Cunming Liu & Tingting Qing & Yingqi Wang & Oleg Borodin & Yang Ren & Kang Xu & Chunsheng Wang, 2019. "Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite," Nature, Nature, vol. 569(7755), pages 245-250, May.
    11. Yuzhang Li & Kai Yan & Hyun-Wook Lee & Zhenda Lu & Nian Liu & Yi Cui, 2016. "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes," Nature Energy, Nature, vol. 1(2), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xuan Wei & Chia-Ching Lin & Chuanwan Wu & Nadeem Qaiser & Yichen Cai & Ang-Yu Lu & Kai Qi & Jui-Han Fu & Yu-Hsiang Chiang & Zheng Yang & Lianhui Ding & Ola. S. Ali & Wei Xu & Wenli Zhang & Mohamed Ben, 2022. "Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    5. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    6. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    7. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    8. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    10. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    11. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    12. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    13. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    14. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    15. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    16. Wang, Jiayu, 2016. "Do light vehicle emissions standards promote environmental goals in Australia?," Conference papers 332692, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    18. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    19. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    20. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45374-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.