IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i2d10.1038_nenergy.2015.29.html
   My bibliography  Save this article

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes

Author

Listed:
  • Yuzhang Li

    (Stanford University)

  • Kai Yan

    (Stanford University)

  • Hyun-Wook Lee

    (Stanford University)

  • Zhenda Lu

    (Stanford University)

  • Nian Liu

    (Stanford University)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

Nanostructuring has been shown to be fruitful in addressing the problems of high-capacity Si anodes. However, issues with the high cost and poor Coulombic efficiencies of nanostructured Si still need to be resolved. Si microparticles are a low-cost alternative but, unlike Si nanoparticles, suffer from unavoidable particle fracture during electrochemical cycling, thus making stable cycling in a real battery impractical. Here we introduce a method to encapsulate Si microparticles (∼1–3 µm) using conformally synthesized cages of multilayered graphene. The graphene cage acts as a mechanically strong and flexible buffer during deep galvanostatic cycling, allowing the microparticles to expand and fracture within the cage while retaining electrical connectivity on both the particle and electrode level. Furthermore, the chemically inert graphene cage forms a stable solid electrolyte interface, minimizing irreversible consumption of lithium ions and rapidly increasing the Coulombic efficiency in the early cycles. We show that even in a full-cell electrochemical test, for which the requirements of stable cycling are stringent, stable cycling (100 cycles; 90% capacity retention) is achieved with the graphene-caged Si microparticles.

Suggested Citation

  • Yuzhang Li & Kai Yan & Hyun-Wook Lee & Zhenda Lu & Nian Liu & Yi Cui, 2016. "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes," Nature Energy, Nature, vol. 1(2), pages 1-9, February.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:2:d:10.1038_nenergy.2015.29
    DOI: 10.1038/nenergy.2015.29
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201529
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2015.29?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ai-Min Li & Zeyi Wang & Travis P. Pollard & Weiran Zhang & Sha Tan & Tianyu Li & Chamithri Jayawardana & Sz-Chian Liou & Jiancun Rao & Brett L. Lucht & Enyuan Hu & Xiao-Qing Yang & Oleg Borodin & Chun, 2024. "High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Sean J. Hartmann & Anna A. Iurchenkova & Tanja Kallio & Ekaterina O. Fedorovskaya, 2020. "Electrochemical Properties of Nitrogen and Oxygen Doped Reduced Graphene Oxide," Energies, MDPI, vol. 13(2), pages 1-14, January.
    3. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    4. Xuan Wei & Chia-Ching Lin & Chuanwan Wu & Nadeem Qaiser & Yichen Cai & Ang-Yu Lu & Kai Qi & Jui-Han Fu & Yu-Hsiang Chiang & Zheng Yang & Lianhui Ding & Ola. S. Ali & Wei Xu & Wenli Zhang & Mohamed Ben, 2022. "Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:2:d:10.1038_nenergy.2015.29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.