IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42206-5.html
   My bibliography  Save this article

Wireless magneto-ionics: voltage control of magnetism by bipolar electrochemistry

Author

Listed:
  • Zheng Ma

    (Universitat Autònoma de Barcelona)

  • Laura Fuentes-Rodriguez

    (Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB
    Institut de Microelectrònica de Barcelona-Centre Nacional de Microelectrònica, CSIC, Campus UAB)

  • Zhengwei Tan

    (Universitat Autònoma de Barcelona)

  • Eva Pellicer

    (Universitat Autònoma de Barcelona)

  • Llibertat Abad

    (Institut de Microelectrònica de Barcelona-Centre Nacional de Microelectrònica, CSIC, Campus UAB)

  • Javier Herrero-Martín

    (ALBA Synchrotron Light Source)

  • Enric Menéndez

    (Universitat Autònoma de Barcelona)

  • Nieves Casañ-Pastor

    (Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB)

  • Jordi Sort

    (Universitat Autònoma de Barcelona
    Institució Catalana de Recerca i Estudis Avançats (ICREA))

Abstract

Modulation of magnetic properties through voltage-driven ion motion and redox processes, i.e., magneto-ionics, is a unique approach to control magnetism with electric field for low-power memory and spintronic applications. So far, magneto-ionics has been achieved through direct electrical connections to the actuated material. Here we evidence that an alternative way to reach such control exists in a wireless manner. Induced polarization in the conducting material immersed in the electrolyte, without direct wire contact, promotes wireless bipolar electrochemistry, an alternative pathway to achieve voltage-driven control of magnetism based on the same electrochemical processes involved in direct-contact magneto-ionics. A significant tunability of magnetization is accomplished for cobalt nitride thin films, including transitions between paramagnetic and ferromagnetic states. Such effects can be either volatile or non-volatile depending on the electrochemical cell configuration. These results represent a fundamental breakthrough that may inspire future device designs for applications in bioelectronics, catalysis, neuromorphic computing, or wireless communications.

Suggested Citation

  • Zheng Ma & Laura Fuentes-Rodriguez & Zhengwei Tan & Eva Pellicer & Llibertat Abad & Javier Herrero-Martín & Enric Menéndez & Nieves Casañ-Pastor & Jordi Sort, 2023. "Wireless magneto-ionics: voltage control of magnetism by bipolar electrochemistry," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42206-5
    DOI: 10.1038/s41467-023-42206-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42206-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42206-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julius Rojas & Alberto Quintana & Aitor Lopeandía & Joaquín Salguero & Beatriz Muñiz & Fatima Ibrahim & Mairbek Chshiev & Aliona Nicolenco & Maciej O. Liedke & Maik Butterling & Andreas Wagner & Veron, 2020. "Voltage-driven motion of nitrogen ions: a new paradigm for magneto-ionics," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    3. Yicheng Guan & Xilin Zhou & Fan Li & Tianping Ma & See-Hun Yang & Stuart S. P. Parkin, 2021. "Ionitronic manipulation of current-induced domain wall motion in synthetic antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    2. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    3. Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
    4. Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Jine Wu & Chenyi Liao & Tianyu Li & Jing Zhou & Linjuan Zhang & Jian-Qiang Wang & Guohui Li & Xianfeng Li, 2023. "Metal-coordinated polybenzimidazole membranes with preferential K+ transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    7. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    8. Ortiz-Vitoriano, N. & Bernuy-López, C. & Ruiz de Larramendi, I. & Knibbe, R. & Thydén, K. & Hauch, A. & Holtappels, P. & Rojo, T., 2013. "Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation," Applied Energy, Elsevier, vol. 104(C), pages 984-991.
    9. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    10. Yusung Kim & Sanghoon Lee & Gu Young Cho & Wonjong Yu & Yeageun Lee & Ikwhang Chang & Jong Dae Baek & Suk Won Cha, 2020. "Investigation of Reducing In-Plane Resistance of Nickel Oxide-Samaria-Doped Ceria Anode in Thin-Film Solid Oxide Fuel Cells," Energies, MDPI, vol. 13(8), pages 1-8, April.
    11. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    12. Kalmula, Babita & Kondapuram, Vijaya Raghavan, 2015. "Fuel processor – fuel cell integration: Systemic issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 409-418.
    13. Lukman Ahmed Omeiza & Abdalla M. Abdalla & Bo Wei & Anitha Dhanasekaran & Yathavan Subramanian & Shammya Afroze & Md Sumon Reza & Saifullah Abu Bakar & Abul Kalam Azad, 2023. "Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells," Energies, MDPI, vol. 16(4), pages 1-22, February.
    14. Cha, Junyoung & Jo, Young Suk & Jeong, Hyangsoo & Han, Jonghee & Nam, Suk Woo & Song, Kwang Ho & Yoon, Chang Won, 2018. "Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications," Applied Energy, Elsevier, vol. 224(C), pages 194-204.
    15. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).
    16. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    17. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    18. Xing Zhao & Peng Wang & Yan Wang & Peipei Chao & Honglei Dong, 2023. "Coprecipitation Synthesis and Impedance Studies on Electrode Interface Characteristics of 0.5Li 2 MnO 3 ·0.5Li(Ni 0.44 Mn 0.44 Co 0.12 )O 2 Cathode Material," Energies, MDPI, vol. 16(16), pages 1-16, August.
    19. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
    20. Gong Chen & Colin Ophus & Alberto Quintana & Heeyoung Kwon & Changyeon Won & Haifeng Ding & Yizheng Wu & Andreas K. Schmid & Kai Liu, 2022. "Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42206-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.