IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41686-9.html
   My bibliography  Save this article

Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex

Author

Listed:
  • Panagiotis Fotiadis

    (University of Pennsylvania
    University of Pennsylvania)

  • Matthew Cieslak

    (University of Pennsylvania)

  • Xiaosong He

    (University of Science and Technology of China)

  • Lorenzo Caciagli

    (University of Pennsylvania)

  • Mathieu Ouellet

    (University of Pennsylvania)

  • Theodore D. Satterthwaite

    (University of Pennsylvania)

  • Russell T. Shinohara

    (University of Pennsylvania
    University of Pennsylvania)

  • Dani S. Bassett

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

Abstract

Recent work has demonstrated that the relationship between structural and functional connectivity varies regionally across the human brain, with reduced coupling emerging along the sensory-association cortical hierarchy. The biological underpinnings driving this expression, however, remain largely unknown. Here, we postulate that intracortical myelination and excitation-inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) and its temporal variance across the cortical hierarchy. We employ atlas- and voxel-based connectivity approaches to analyze neuroimaging data acquired from two groups of healthy participants. Our findings are consistent across six complementary processing pipelines: 1) SFC and its temporal variance respectively decrease and increase across the unimodal-transmodal and granular-agranular gradients; 2) increased myelination and lower EI-ratio are associated with more rigid SFC and restricted moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to myelination as the principal predictor of SFC occurs when traversing from granular to agranular cortical regions. Collectively, our work delivers a framework to conceptualize structure-function relationships in the human brain, paving the way for an improved understanding of how demyelination and/or EI-imbalances induce reorganization in brain disorders.

Suggested Citation

  • Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41686-9
    DOI: 10.1038/s41467-023-41686-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41686-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41686-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zijin Gu & Keith Wakefield Jamison & Mert Rory Sabuncu & Amy Kuceyeski, 2021. "Heritability and interindividual variability of regional structure-function coupling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. B. Haider & M. Häusser & M. Carandini, 2013. "Correction: Corrigendum: Inhibition dominates sensory responses in awake cortex," Nature, Nature, vol. 500(7464), pages 612-612, August.
    3. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    4. Klaus-Armin Nave, 2010. "Myelination and support of axonal integrity by glia," Nature, Nature, vol. 468(7321), pages 244-252, November.
    5. Michael Wehr & Anthony M. Zador, 2003. "Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex," Nature, Nature, vol. 426(6965), pages 442-446, November.
    6. John D. Medaglia & Weiyu Huang & Elisabeth A. Karuza & Apoorva Kelkar & Sharon L. Thompson-Schill & Alejandro Ribeiro & Danielle S. Bassett, 2018. "Functional alignment with anatomical networks is associated with cognitive flexibility," Nature Human Behaviour, Nature, vol. 2(2), pages 156-164, February.
    7. Dion, Michelle L. & Sumner, Jane Lawrence & Mitchell, Sara McLaughlin, 2018. "Gendered Citation Patterns across Political Science and Social Science Methodology Fields," Political Analysis, Cambridge University Press, vol. 26(3), pages 312-327, July.
    8. Maria Giulia Preti & Dimitri Van De Ville, 2019. "Decoupling of brain function from structure reveals regional behavioral specialization in humans," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    9. Maliniak, Daniel & Powers, Ryan & Walter, Barbara F., 2013. "The Gender Citation Gap in International Relations," International Organization, Cambridge University Press, vol. 67(4), pages 889-922, October.
    10. Bilal Haider & Michael Häusser & Matteo Carandini, 2013. "Inhibition dominates sensory responses in the awake cortex," Nature, Nature, vol. 493(7430), pages 97-100, January.
    11. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    12. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Manoj Kumar & Gregory Handy & Stylianos Kouvaros & Yanjun Zhao & Lovisa Ljungqvist Brinson & Eric Wei & Brandon Bizup & Brent Doiron & Thanos Tzounopoulos, 2023. "Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    4. Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Mike Thelwall, 2020. "Female citation impact superiority 1996–2018 in six out of seven English‐speaking nations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(8), pages 979-990, August.
    7. Torsten Skov, 2020. "Unconscious Gender Bias in Academia: Scarcity of Empirical Evidence," Societies, MDPI, vol. 10(2), pages 1-13, March.
    8. Allison C. Morgan & Nicholas LaBerge & Daniel B. Larremore & Mirta Galesic & Jennie E. Brand & Aaron Clauset, 2022. "Socioeconomic roots of academic faculty," Nature Human Behaviour, Nature, vol. 6(12), pages 1625-1633, December.
    9. Tahmooresnejad, Leila & Turkina, Ekaterina, 2022. "Female inventors over time: Factors affecting female Inventors’ innovation performance," Journal of Informetrics, Elsevier, vol. 16(1).
    10. Marjolijn N. Wijnen & Jorg J. M. Massen & Mariska E. Kret, 2021. "Gender bias in the allocation of student grants," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5477-5488, July.
    11. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Paul A. Djupe & Kim Quaile Hill & Amy Erica Smith & Anand E. Sokhey, 2020. "Putting personality in context: determinants of research productivity and impact in political science," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2279-2300, September.
    14. S. Parker Singleton & Andrea I. Luppi & Robin L. Carhart-Harris & Josephine Cruzat & Leor Roseman & David J. Nutt & Gustavo Deco & Morten L. Kringelbach & Emmanuel A. Stamatakis & Amy Kuceyeski, 2022. "Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Andrew D. Grotzinger & Travis T. Mallard & Zhaowen Liu & Jakob Seidlitz & Tian Ge & Jordan W. Smoller, 2023. "Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    17. Michelle L. Dion & Sara McLaughlin Mitchell & Jane L. Sumner, 2020. "Gender, seniority, and self-citation practices in political science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 1-28, October.
    18. Andrews, Mary E. & Mattan, Bradley D. & Richards, Keana & Moore-Berg, Samantha L. & Falk, Emily B., 2022. "Using first-person narratives about healthcare workers and people who are incarcerated to motivate helping behaviors during the COVID-19 pandemic," Social Science & Medicine, Elsevier, vol. 299(C).
    19. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Samara Klar & Yanna Krupnikov & John Barry Ryan & Kathleen Searles & Yotam Shmargad, 2020. "Using social media to promote academic research: Identifying the benefits of twitter for sharing academic work," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41686-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.