IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28591-3.html
   My bibliography  Save this article

Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex

Author

Listed:
  • Federico Rocchi

    (Istituto Italiano di Tecnologia
    University of Trento)

  • Carola Canella

    (Istituto Italiano di Tecnologia
    University of Trento)

  • Shahryar Noei

    (University of Trento
    Istituto Italiano di Tecnologia)

  • Daniel Gutierrez-Barragan

    (Istituto Italiano di Tecnologia)

  • Ludovico Coletta

    (Istituto Italiano di Tecnologia
    University of Trento)

  • Alberto Galbusera

    (Istituto Italiano di Tecnologia)

  • Alexia Stuefer

    (Istituto Italiano di Tecnologia
    University of Trento)

  • Stefano Vassanelli

    (University of Padova)

  • Massimo Pasqualetti

    (Istituto Italiano di Tecnologia
    University of Pisa)

  • Giuliano Iurilli

    (Istituto Italiano di Tecnologia)

  • Stefano Panzeri

    (Istituto Italiano di Tecnologia
    University Medical Center Hamburg-Eppendorf)

  • Alessandro Gozzi

    (Istituto Italiano di Tecnologia)

Abstract

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1–4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.

Suggested Citation

  • Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28591-3
    DOI: 10.1038/s41467-022-28591-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28591-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28591-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Pagani & Noemi Barsotti & Alice Bertero & Stavros Trakoshis & Laura Ulysse & Andrea Locarno & Ieva Miseviciute & Alessia De Felice & Carola Canella & Kaustubh Supekar & Alberto Galbusera & Vinod, 2021. "mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Adrián Ponce-Alvarez & Gustavo Deco & Patric Hagmann & Gian Luca Romani & Dante Mantini & Maurizio Corbetta, 2015. "Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    3. Brandon R. Munn & Eli J. Müller & Gabriel Wainstein & James M. Shine, 2021. "The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Mingshan Xue & Bassam V. Atallah & Massimo Scanziani, 2014. "Equalizing excitation–inhibition ratios across visual cortical neurons," Nature, Nature, vol. 511(7511), pages 596-600, July.
    5. Jessica A. Cardin & Marie Carlén & Konstantinos Meletis & Ulf Knoblich & Feng Zhang & Karl Deisseroth & Li-Huei Tsai & Christopher I. Moore, 2009. "Driving fast-spiking cells induces gamma rhythm and controls sensory responses," Nature, Nature, vol. 459(7247), pages 663-667, June.
    6. Kevin T. Beier & Christina K. Kim & Paul Hoerbelt & Lin Wai Hung & Boris D. Heifets & Katherine E. DeLoach & Timothy J. Mosca & Sophie Neuner & Karl Deisseroth & Liqun Luo & Robert C. Malenka, 2017. "Rabies screen reveals GPe control of cocaine-triggered plasticity," Nature, Nature, vol. 549(7672), pages 345-350, September.
    7. Nikos K. Logothetis, 2008. "What we can do and what we cannot do with fMRI," Nature, Nature, vol. 453(7197), pages 869-878, June.
    8. Xiao Liu & Jacco A. de Zwart & Marieke L. Schölvinck & Catie Chang & Frank Q. Ye & David A. Leopold & Jeff H. Duyn, 2018. "Subcortical evidence for a contribution of arousal to fMRI studies of brain activity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    9. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joana Cabral & Francisca F. Fernandes & Noam Shemesh, 2023. "Intrinsic macroscale oscillatory modes driving long range functional connectivity in female rat brains detected by ultrafast fMRI," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lou T. Blanpain & Eric R. Cole & Emily Chen & James K. Park & Michael Y. Walelign & Robert E. Gross & Brian T. Cabaniss & Jon T. Willie & Annabelle C. Singer, 2024. "Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Brandon R. Munn & Eli J. Müller & Vicente Medel & Sharon L. Naismith & Joseph T. Lizier & Robert D. Sanders & James M. Shine, 2023. "Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    7. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    8. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Feng Han & Xufu Liu & Richard B. Mailman & Xuemei Huang & Xiao Liu, 2023. "Resting-state global brain activity affects early β-amyloid accumulation in default mode network," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Piotr Majer & Peter Mohr & Hauke Heekeren & Wolfgang Karl Härdle, 2014. "Portfolio Decisions and Brain Reactions via the CEAD method," SFB 649 Discussion Papers SFB649DP2014-036, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Alejandro Morán & Miguel C Soriano, 2018. "Improving the quality of a collective signal in a consumer EEG headset," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
    14. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    17. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    18. Alexis T Baria & Brian Maniscalco & Biyu J He, 2017. "Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-29, November.
    19. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    20. Pérez-Centeno, Victor, 2018. "Brain-driven entrepreneurship research: Expanded review and research agenda towards entrepreneurial enhancement," Working Papers 02/18, Institut für Mittelstandsforschung (IfM) Bonn.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28591-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.