IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v9y2025i4d10.1038_s41562-025-02117-5.html
   My bibliography  Save this article

Sleep selectively and durably enhances memory for the sequence of real-world experiences

Author

Listed:
  • N. B. Diamond

    (Rotman Research Institute at Baycrest Academy for Research and Education
    University of Toronto
    University of Pennsylvania)

  • S. Simpson

    (Rotman Research Institute at Baycrest Academy for Research and Education
    University of Toronto)

  • D. Baena

    (University of Ottawa
    The Royal’s Institute of Mental Health Research)

  • B. Murray

    (University of Toronto
    Sunnybrook Health Sciences Centre)

  • S. Fogel

    (University of Ottawa
    The Royal’s Institute of Mental Health Research)

  • B. Levine

    (Rotman Research Institute at Baycrest Academy for Research and Education
    University of Toronto
    University of Toronto)

Abstract

Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)—specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations). This above-baseline boost in sequence memory was not evident after a matched period of wakefulness. Moreover, the preferential retention of sequence relative to featural memory observed after a night’s sleep grew over time up to 1 year post-encoding. Finally, overnight polysomnography showed that sleep-related memory enhancement was associated with the duration and neurophysiological hallmarks of slow-wave sleep previously linked to sequential neural replay, particularly spindle–slow wave coupling. These results suggest that sleep serves a crucial and selective role in enhancing sequential organization in our memory for past events at the expense of perceptual details, linking sleep-related neural mechanisms to the days-to-years-long transformation of memory for complex real-life experiences.

Suggested Citation

  • N. B. Diamond & S. Simpson & D. Baena & B. Murray & S. Fogel & B. Levine, 2025. "Sleep selectively and durably enhances memory for the sequence of real-world experiences," Nature Human Behaviour, Nature, vol. 9(4), pages 746-757, April.
  • Handle: RePEc:nat:nathum:v:9:y:2025:i:4:d:10.1038_s41562-025-02117-5
    DOI: 10.1038/s41562-025-02117-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-025-02117-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-025-02117-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2021. "Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Randolph F. Helfrich & Janna D. Lendner & Bryce A. Mander & Heriberto Guillen & Michelle Paff & Lilit Mnatsakanyan & Sumeet Vadera & Matthew P. Walker & Jack J. Lin & Robert T. Knight, 2019. "Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Erin Kendall Braun & G. Elliott Wimmer & Daphna Shohamy, 2018. "Retroactive and graded prioritization of memory by reward," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    5. Eelco V van Dongen & Jan-Willem Thielen & Atsuko Takashima & Markus Barth & Guillén Fernández, 2012. "Sleep Supports Selective Retention of Associative Memories Based on Relevance for Future Utilization," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-6, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Haoxin Zhang & Ivan Skelin & Shiting Ma & Michelle Paff & Lilit Mnatsakanyan & Michael A. Yassa & Robert T. Knight & Jack J. Lin, 2024. "Awake ripples enhance emotional memory encoding in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Leslie J. Sibener & Alice C. Mosberger & Tiffany X. Chen & Vivek R. Athalye & James M. Murray & Rui M. Costa, 2025. "Dissociable roles of distinct thalamic circuits in learning reaches to spatial targets," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. János Körmendi & Eszter Ferentzi & Tara Petzke & Vera Gál & Ferenc Köteles, 2023. "Do we need to accurately perceive our heartbeats? Cardioceptive accuracy and sensibility are independent from indicators of negative affectivity, body awareness, body image dissatisfaction, and alexit," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-17, July.
    9. Douglas Feitosa Tomé & Sadra Sadeh & Claudia Clopath, 2022. "Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    12. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    14. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    15. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    16. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    17. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    18. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    19. Alexander Prehn-Kristensen & Kristin Lotzkat & Eva Bauhofer & Christian D Wiesner & Lioba Baving, 2015. "Sleep Supports Memory of Odors in Adults but Not in Children," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-14, September.
    20. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:9:y:2025:i:4:d:10.1038_s41562-025-02117-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.