IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47263-y.html
   My bibliography  Save this article

Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges

Author

Listed:
  • Lou T. Blanpain

    (Emory University School of Medicine
    Emory University
    Georgia Institute of Technology & Emory University)

  • Eric R. Cole

    (Emory University School of Medicine
    Georgia Institute of Technology & Emory University)

  • Emily Chen

    (Emory University School of Medicine)

  • James K. Park

    (Emory University School of Medicine)

  • Michael Y. Walelign

    (Georgia Institute of Technology)

  • Robert E. Gross

    (Emory University School of Medicine
    New Brunswick and New Jersey Medical School)

  • Brian T. Cabaniss

    (Emory University School of Medicine)

  • Jon T. Willie

    (Washington University)

  • Annabelle C. Singer

    (Emory University
    Georgia Institute of Technology & Emory University)

Abstract

Modulating brain oscillations has strong therapeutic potential. Interventions that both non-invasively modulate deep brain structures and are practical for chronic daily home use are desirable for a variety of therapeutic applications. Repetitive audio-visual stimulation, or sensory flicker, is an accessible approach that modulates hippocampus in mice, but its effects in humans are poorly defined. We therefore quantified the neurophysiological effects of flicker with high spatiotemporal resolution in patients with focal epilepsy who underwent intracranial seizure monitoring. In this interventional trial (NCT04188834) with a cross-over design, subjects underwent different frequencies of flicker stimulation in the same recording session with the effect of sensory flicker exposure on local field potential (LFP) power and interictal epileptiform discharges (IEDs) as primary and secondary outcomes, respectively. Flicker focally modulated local field potentials in expected canonical sensory cortices but also in the medial temporal lobe and prefrontal cortex, likely via resonance of stimulated long-range circuits. Moreover, flicker decreased interictal epileptiform discharges, a pathological biomarker of epilepsy and degenerative diseases, most strongly in regions where potentials were flicker-modulated, especially the visual cortex and medial temporal lobe. This trial met the scientific goal and is now closed. Our findings reveal how multi-sensory stimulation may modulate cortical structures to mitigate pathological activity in humans.

Suggested Citation

  • Lou T. Blanpain & Eric R. Cole & Emily Chen & James K. Park & Michael Y. Walelign & Robert E. Gross & Brian T. Cabaniss & Jon T. Willie & Annabelle C. Singer, 2024. "Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47263-y
    DOI: 10.1038/s41467-024-47263-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47263-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47263-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander van Bree & Ediz Sohoglu & Matthew H Davis & Benedikt Zoefel, 2021. "Sustained neural rhythms reveal endogenous oscillations supporting speech perception," PLOS Biology, Public Library of Science, vol. 19(2), pages 1-33, February.
    2. Minagi Ozawa & Patrick Davis & Jianguang Ni & Jamie Maguire & Thomas Papouin & Leon Reijmers, 2020. "Experience-dependent resonance in amygdalo-cortical circuits supports fear memory retrieval following extinction," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    3. Hannah F. Iaccarino & Annabelle C. Singer & Anthony J. Martorell & Andrii Rudenko & Fan Gao & Tyler Z. Gillingham & Hansruedi Mathys & Jinsoo Seo & Oleg Kritskiy & Fatema Abdurrob & Chinnakkaruppan Ad, 2016. "Gamma frequency entrainment attenuates amyloid load and modifies microglia," Nature, Nature, vol. 540(7632), pages 230-235, December.
    4. Jessica A. Cardin & Marie Carlén & Konstantinos Meletis & Ulf Knoblich & Feng Zhang & Karl Deisseroth & Li-Huei Tsai & Christopher I. Moore, 2009. "Driving fast-spiking cells induces gamma rhythm and controls sensory responses," Nature, Nature, vol. 459(7247), pages 663-667, June.
    5. Guillaume Etter & Suzanne Veldt & Jisoo Choi & Sylvain Williams, 2023. "Optogenetic frequency scrambling of hippocampal theta oscillations dissociates working memory retrieval from hippocampal spatiotemporal codes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Xin Fu & Eric Teboul & Grant L. Weiss & Pantelis Antonoudiou & Chandrashekhar D. Borkar & Jonathan P. Fadok & Jamie Maguire & Jeffrey G. Tasker, 2022. "Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    5. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    8. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    9. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    10. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    11. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    12. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    13. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Ana Sofía Ríos & Simón Oxenford & Clemens Neudorfer & Konstantin Butenko & Ningfei Li & Nanditha Rajamani & Alexandre Boutet & Gavin J. B. Elias & Jurgen Germann & Aaron Loh & Wissam Deeb & Fuyixue Wa, 2022. "Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Manuela Costa & Diego Lozano-Soldevilla & Antonio Gil-Nagel & Rafael Toledano & Carina R. Oehrn & Lukas Kunz & Mar Yebra & Costantino Mendez-Bertolo & Lennart Stieglitz & Johannes Sarnthein & Nikolai , 2022. "Aversive memory formation in humans involves an amygdala-hippocampus phase code," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Toshinori Namba & Shuji Ishihara, 2020. "Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-18, February.
    17. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Marczak, Martyna & Gómez, Víctor, 2012. "SPECTRAN, a set of Matlab programs for Spectral analysis," FZID Discussion Papers 60-2012, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    19. Rashid Mehmood & Muhammad Riaz & Ronald Does, 2013. "Efficient power computation for r out of m runs rules schemes," Computational Statistics, Springer, vol. 28(2), pages 667-681, April.
    20. Jung, Jaesung & Tam, Kwa-Sur, 2013. "A frequency domain approach to characterize and analyze wind speed patterns," Applied Energy, Elsevier, vol. 103(C), pages 435-443.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47263-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.