IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59262-8.html
   My bibliography  Save this article

Phylogenetic divergence of GABAB receptor signaling in neocortical networks over adult life

Author

Listed:
  • Max A. Wilson

    (University of Edinburgh
    University of Edinburgh
    University of Edinburgh)

  • Anna Sumera

    (University of Edinburgh
    University of Edinburgh
    University of Edinburgh)

  • Lewis W. Taylor

    (University of Edinburgh
    UK Dementia Research Institute at the University of Edinburgh)

  • Soraya Meftah

    (University of Edinburgh
    UK Dementia Research Institute at the University of Edinburgh)

  • Robert I. McGeachan

    (University of Edinburgh
    UK Dementia Research Institute at the University of Edinburgh)

  • Tamara Modebadze

    (Newcastle University)

  • B. Ashan P. Jayasekera

    (Newcastle University)

  • Christopher J. A. Cowie

    (Royal Victoria Infirmary)

  • Fiona E. N. LeBeau

    (Newcastle University)

  • Imran Liaquat

    (Royal Infirmary Edinburgh)

  • Claire S. Durrant

    (University of Edinburgh
    UK Dementia Research Institute at the University of Edinburgh)

  • Paul M. Brennan

    (Royal Infirmary Edinburgh
    University of Edinburgh)

  • Sam A. Booker

    (University of Edinburgh
    University of Edinburgh
    University of Edinburgh)

Abstract

Cortical circuit activity is controlled by GABA-mediated inhibition in a spatiotemporally restricted manner. GABAB receptor (GABABR) signalling exerts powerful slow inhibition that controls synaptic, dendritic and neuronal activity. But, how GABABRs contribute to circuit-level inhibition over the lifespan of rodents and humans is poorly understood. In this study, we quantitatively determined the functional contribution of GABABR signalling to pre- and postsynaptic domains in rat and human cortical principal cells. We find that postsynaptic GABABR differentially control pyramidal cell activity within the cortical column as a function of age in rodents, but minimally change over adult life in humans. Presynaptic GABABRs exert stronger inhibition in humans than rodents. Pre- and postsynaptic GABABRs contribute to co-ordination of local information processing in a layer- and species-dependent manner. Finally, we show that GABABR signalling is elevated in patients that have received the anti-seizure medication Levetiracetam. These data directly increase our knowledge of translationally relevant local circuit dynamics, with direct impact on understanding the role of GABABRs in the treatment of seizure disorders.

Suggested Citation

  • Max A. Wilson & Anna Sumera & Lewis W. Taylor & Soraya Meftah & Robert I. McGeachan & Tamara Modebadze & B. Ashan P. Jayasekera & Christopher J. A. Cowie & Fiona E. N. LeBeau & Imran Liaquat & Claire , 2025. "Phylogenetic divergence of GABAB receptor signaling in neocortical networks over adult life," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59262-8
    DOI: 10.1038/s41467-025-59262-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59262-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59262-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Trygve E. Bakken & Nikolas L. Jorstad & Qiwen Hu & Blue B. Lake & Wei Tian & Brian E. Kalmbach & Megan Crow & Rebecca D. Hodge & Fenna M. Krienen & Staci A. Sorensen & Jeroen Eggermont & Zizhen Yao & , 2021. "Comparative cellular analysis of motor cortex in human, marmoset and mouse," Nature, Nature, vol. 598(7879), pages 111-119, October.
    2. Jim Berg & Staci A. Sorensen & Jonathan T. Ting & Jeremy A. Miller & Thomas Chartrand & Anatoly Buchin & Trygve E. Bakken & Agata Budzillo & Nick Dee & Song-Lin Ding & Nathan W. Gouwens & Rebecca D. H, 2021. "Human neocortical expansion involves glutamatergic neuron diversification," Nature, Nature, vol. 598(7879), pages 151-158, October.
    3. Jessica A. Cardin & Marie Carlén & Konstantinos Meletis & Ulf Knoblich & Feng Zhang & Karl Deisseroth & Li-Huei Tsai & Christopher I. Moore, 2009. "Driving fast-spiking cells induces gamma rhythm and controls sensory responses," Nature, Nature, vol. 459(7247), pages 663-667, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Salim Megat & Christine Marques & Marina Hernán-Godoy & Chantal Sellier & Geoffrey Stuart-Lopez & Sylvie Dirrig-Grosch & Charlotte Gorin & Aurore Brunet & Mathieu Fischer & Céline Keime & Pascal Kessl, 2025. "CREB3 gain of function variants protect against ALS," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    4. Yuqiu Zhou & Wei He & Weizhen Hou & Ying Zhu, 2024. "Pianno: a probabilistic framework automating semantic annotation for spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Lina Marcela Carmona & Anders Nelson & Lin T. Tun & An Kim & Rani Shiao & Michael D. Kissner & Vilas Menon & Rui M. Costa, 2025. "Corticothalamic neurons in motor cortex have a permissive role in motor execution," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Ankita Sengupta & Sanjna Banerjee & Suhas Ganesh & Shrey Grover & Devarajan Sridharan, 2024. "The right posterior parietal cortex mediates spatial reorienting of attentional choice bias," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. repec:plo:pcbi00:1003164 is not listed on IDEAS
    8. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    10. Songjian Lu & Jiyuan Yang & Lei Yan & Jingjing Liu & Judy Jiaru Wang & Rhea Jain & Jiyang Yu, 2025. "Transcriptome size matters for single-cell RNA-seq normalization and bulk deconvolution," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Xinhong Chen & Damien A. Wolfe & Dhanesh Sivadasan Bindu & Mengying Zhang & Naz Taskin & David Goertsen & Timothy F. Shay & Erin E. Sullivan & Sheng-Fu Huang & Sripriya Ravindra Kumar & Cynthia M. Aro, 2023. "Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Gabriele Marcassa & Dan Dascenco & Blanca Lorente-Echeverría & Danie Daaboul & Jeroen Vandensteen & Elke Leysen & Lucas Baltussen & Andrew J. M. Howden & Joris Wit, 2025. "Synaptic signatures and disease vulnerabilities of layer 5 pyramidal neurons," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    13. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    14. Muyesier Maimaitili & Muwan Chen & Fabia Febbraro & Ekin Ucuncu & Rachel Kelly & Jonathan Christos Niclis & Josefine Rågård Christiansen & Noëmie Mermet-Joret & Dragos Niculescu & Johanne Lauritsen & , 2023. "Enhanced production of mesencephalic dopaminergic neurons from lineage-restricted human undifferentiated stem cells," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    15. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. repec:plo:pcbi00:1002354 is not listed on IDEAS
    18. Yuyao Song & Zhichao Miao & Alvis Brazma & Irene Papatheodorou, 2023. "Benchmarking strategies for cross-species integration of single-cell RNA sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    21. Kai Zhou & Wei Wei & Dan Yang & Hui Zhang & Wei Yang & Yunpeng Zhang & Yingnan Nie & Mingming Hao & Pengcheng Wang & Hang Ruan & Ting Zhang & Shouyan Wang & Yaobo Liu, 2024. "Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    22. Thomas M. Goralski & Lindsay Meyerdirk & Libby Breton & Laura Brasseur & Kevin Kurgat & Daniella DeWeerd & Lisa Turner & Katelyn Becker & Marie Adams & Daniel J. Newhouse & Michael X. Henderson, 2024. "Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59262-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.