Author
Listed:
- Lina Marcela Carmona
(Columbia University)
- Anders Nelson
(New York University)
- Lin T. Tun
(Columbia University)
- An Kim
(Columbia University)
- Rani Shiao
(The Rockefeller University)
- Michael D. Kissner
(Columbia University Irving Medical Center)
- Vilas Menon
(Columbia University Irving Medical Center)
- Rui M. Costa
(Columbia University
Allen Institute)
Abstract
The primary motor cortex (M1) is a central hub for motor learning and execution. M1 is composed of heterogeneous cell types with varying relationships to movement. Here, we tagged active neurons at different stages of motor task performance in mice and characterized cell type composition. We identified corticothalamic neurons (M1CT) as consistently enriched with training progression. Using two-photon calcium imaging, we found that M1CT activity is largely suppressed during movement, and this negative correlation augments with training. Increasing M1CT activity through closed-loop optogenetic manipulations during forelimb movement significantly hinders execution, an effect that became stronger with training. Similar manipulations, however, had little effect on locomotion. In contrast, M1 corticospinal neurons positively correlate with movement, with an increase during training. We uncovered that M1CT neurons suppress corticospinal activity via feedforward inhibition, also scaling with training. These results identify a permissive role of corticothalamic neurons in movement execution through disinhibition of corticospinal neurons.
Suggested Citation
Lina Marcela Carmona & Anders Nelson & Lin T. Tun & An Kim & Rani Shiao & Michael D. Kissner & Vilas Menon & Rui M. Costa, 2025.
"Corticothalamic neurons in motor cortex have a permissive role in motor execution,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59954-1
DOI: 10.1038/s41467-025-59954-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59954-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.