IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46437-y.html
   My bibliography  Save this article

Mapping human tissues with highly multiplexed RNA in situ hybridization

Author

Listed:
  • Kian Kalhor

    (University of California San Diego)

  • Chien-Ju Chen

    (University of California San Diego
    University of California San Diego)

  • Ho Suk Lee

    (University of California San Diego
    University of California San Diego)

  • Matthew Cai

    (University of California San Diego)

  • Mahsa Nafisi

    (University of California San Diego)

  • Richard Que

    (University of California San Diego)

  • Carter R. Palmer

    (Sanford Burnham Prebys Medical Discovery Institute
    University of California San Diego)

  • Yixu Yuan

    (University of California San Diego)

  • Yida Zhang

    (Harvard Medical School)

  • Xuwen Li

    (Altos Labs)

  • Jinghui Song

    (University of California San Diego)

  • Amanda Knoten

    (Washington University School of Medicine)

  • Blue B. Lake

    (University of California San Diego
    Altos Labs)

  • Joseph P. Gaut

    (Washington University School of Medicine)

  • C. Dirk Keene

    (University of Washington School of Medicine)

  • Ed Lein

    (Allen Institute for Brain Science)

  • Peter V. Kharchenko

    (Harvard Medical School
    Altos Labs)

  • Jerold Chun

    (Sanford Burnham Prebys Medical Discovery Institute)

  • Sanjay Jain

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Jian-Bing Fan

    (Illumina)

  • Kun Zhang

    (University of California San Diego
    Altos Labs)

Abstract

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections. We introduce an omni-cell type cytoplasmic stain that substantially improves the segmentation of cell bodies. Our enzyme-free isothermal decoding procedure allows us to image 121 genes in large sections from the human neocortex in 20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.

Suggested Citation

  • Kian Kalhor & Chien-Ju Chen & Ho Suk Lee & Matthew Cai & Mahsa Nafisi & Richard Que & Carter R. Palmer & Yixu Yuan & Yida Zhang & Xuwen Li & Jinghui Song & Amanda Knoten & Blue B. Lake & Joseph P. Gau, 2024. "Mapping human tissues with highly multiplexed RNA in situ hybridization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46437-y
    DOI: 10.1038/s41467-024-46437-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46437-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46437-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blue B. Lake & Song Chen & Masato Hoshi & Nongluk Plongthongkum & Diane Salamon & Amanda Knoten & Anitha Vijayan & Ramakrishna Venkatesh & Eric H. Kim & Derek Gao & Joseph Gaut & Kun Zhang & Sanjay Ja, 2019. "A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Blue B. Lake & Rajasree Menon & Seth Winfree & Qiwen Hu & Ricardo Melo Ferreira & Kian Kalhor & Daria Barwinska & Edgar A. Otto & Michael Ferkowicz & Dinh Diep & Nongluk Plongthongkum & Amanda Knoten , 2023. "An atlas of healthy and injured cell states and niches in the human kidney," Nature, Nature, vol. 619(7970), pages 585-594, July.
    3. Zizhen Yao & Hanqing Liu & Fangming Xie & Stephan Fischer & Ricky S. Adkins & Andrew I. Aldridge & Seth A. Ament & Anna Bartlett & M. Margarita Behrens & Koen Berge & Darren Bertagnolli & Hector Roux , 2021. "A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex," Nature, Nature, vol. 598(7879), pages 103-110, October.
    4. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    5. Trygve E. Bakken & Nikolas L. Jorstad & Qiwen Hu & Blue B. Lake & Wei Tian & Brian E. Kalmbach & Megan Crow & Rebecca D. Hodge & Fenna M. Krienen & Staci A. Sorensen & Jeroen Eggermont & Zizhen Yao & , 2021. "Comparative cellular analysis of motor cortex in human, marmoset and mouse," Nature, Nature, vol. 598(7879), pages 111-119, October.
    6. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    7. Meng Zhang & Stephen W. Eichhorn & Brian Zingg & Zizhen Yao & Kaelan Cotter & Hongkui Zeng & Hongwei Dong & Xiaowei Zhuang, 2021. "Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH," Nature, Nature, vol. 598(7879), pages 137-143, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Fan Wang & Hua-Jie Chen & Zhong-Da He & Zhi-Gang Wang & Dai-Wen Pang & Shu-Lin Liu, 2025. "Tetrahedral DNA dendritic nanostructure-enhanced FISH for high-speed, sensitive spatial transcriptomics," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Kang Jin & Zuobai Zhang & Ke Zhang & Francesca Viggiani & Claire Callahan & Jian Tang & Bruce J. Aronow & Jian Shu, 2025. "Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Lina Marcela Carmona & Anders Nelson & Lin T. Tun & An Kim & Rani Shiao & Michael D. Kissner & Vilas Menon & Rui M. Costa, 2025. "Corticothalamic neurons in motor cortex have a permissive role in motor execution," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    9. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Rebecca Z. Weber & Beatriz Achón Buil & Nora H. Rentsch & Patrick Perron & Stefanie Halliday & Allison Bosworth & Mingzi Zhang & Kassandra Kisler & Chantal Bodenmann & Kathrin J. Zürcher & Daniela Uhr, 2025. "Neural xenografts contribute to long-term recovery in stroke via molecular graft-host crosstalk," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    13. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Lite Yang & Fang Liu & Hannah Hahm & Takao Okuda & Xiaoyue Li & Yufen Zhang & Vani Kalyanaraman & Monique R. Heitmeier & Vijay K. Samineni, 2025. "Projection-TAGs enable multiplex projection tracing and multi-modal profiling of projection neurons," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    15. Songren Wei & Meng Luo & Pingping Wang & Rui Chen & Xiyun Jin & Chang Xu & Chenyang Li & Xiaoyu Lin & Zhaochun Xu & Hongxin Liu & Rui Cheng & Wenyi Yang & Yideng Cai & Guangfu Xue & Peng Huang & Zhiga, 2025. "Charting the spatial transcriptome of the human cerebral cortex at single-cell resolution," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    16. Patrick C. N. Martin & Wenqi Wang & Hyobin Kim & Henrietta Holze & Paul B. Fisher & Arturo P. Saavedra & Robert A. Winn & Esha Madan & Rajan Gogna & Kyoung Jae Won, 2025. "Multi-scale and multi-context interpretable mapping of cell states across heterogeneous spatial samples," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    17. Ying Lei & Mengnan Cheng & Zihao Li & Zhenkun Zhuang & Liang Wu & Yunong sun & Lei Han & Zhihao Huang & Yuzhou Wang & Zifei Wang & Liqin Xu & Yue Yuan & Shang Liu & Taotao Pan & Jiarui Xie & Chuanyu L, 2022. "Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Zhiyuan Liu & Dafei Wu & Weiwei Zhai & Liang Ma, 2023. "SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. MaryAnne A. Achieng & Jack Schnell & Connor C. Fausto & Réka L. Csipán & Kari Koppitch & Matthew E. Thornton & Brendan H. Grubbs & Nils O. Lindström, 2025. "Axial nephron fate switching demonstrates a plastic system tunable on demand," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Jie Liao & Jingyang Qian & Yin Fang & Zhuo Chen & Xiang Zhuang & Ningyu Zhang & Xin Shao & Yining Hu & Penghui Yang & Junyun Cheng & Yang Hu & Lingqi Yu & Haihong Yang & Jinlu Zhang & Xiaoyan Lu & Li , 2022. "De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46437-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.