IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62782-y.html
   My bibliography  Save this article

Multi-scale and multi-context interpretable mapping of cell states across heterogeneous spatial samples

Author

Listed:
  • Patrick C. N. Martin

    (Cedars-Sinai Medical Center)

  • Wenqi Wang

    (University of Copenhagen)

  • Hyobin Kim

    (Cedars-Sinai Medical Center)

  • Henrietta Holze

    (University of Copenhagen)

  • Paul B. Fisher

    (Virginia Commonwealth University
    Virginia Commonwealth University
    Virginia Commonwealth University)

  • Arturo P. Saavedra

    (Virginia Commonwealth University)

  • Robert A. Winn

    (Virginia Commonwealth University
    Virginia Commonwealth University School of Medicine
    Virginia Commonwealth University)

  • Esha Madan

    (Virginia Commonwealth University
    Virginia Commonwealth University
    Virginia Commonwealth University
    Virginia Commonwealth University School of Medicine)

  • Rajan Gogna

    (Virginia Commonwealth University
    Virginia Commonwealth University
    Virginia Commonwealth University
    Virginia Commonwealth University School of Medicine)

  • Kyoung Jae Won

    (Cedars-Sinai Medical Center)

Abstract

There is a growing demand for methods that can effectively align and compare spatial data in the absence of obvious visual correspondence. To address this challenge, we developed an interpretable cell mapping strategy based on solving a Linear Assignment Problem (LAP) where the total cost is computed by considering cells and their niches. We demonstrate that our approach outperforms other methods at capturing the spatial context of cells in synthetic and real data sets. The flexibility of our implementation enhances the interpretability of mapping and allows for accurate cell mapping across samples, technologies, resolutions, developmental and regenerative time. We show spatiotemporal decoupling of cells during development and patient level sub-populations in In Situ Mass Cytometry (IMC) cancer data sets. Our interpretable mapping approach facilitates systemic comparison and analysis of heterogeneous spatial data. We provide a flexible framework for researchers to tailor their analysis to the specific biological and research context.

Suggested Citation

  • Patrick C. N. Martin & Wenqi Wang & Hyobin Kim & Henrietta Holze & Paul B. Fisher & Arturo P. Saavedra & Robert A. Winn & Esha Madan & Rajan Gogna & Kyoung Jae Won, 2025. "Multi-scale and multi-context interpretable mapping of cell states across heterogeneous spatial samples," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62782-y
    DOI: 10.1038/s41467-025-62782-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62782-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62782-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kalen Clifton & Manjari Anant & Gohta Aihara & Lyla Atta & Osagie K. Aimiuwu & Justus M. Kebschull & Michael I. Miller & Daniel Tward & Jean Fan, 2023. "STalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Miranda V. Hunter & Reuben Moncada & Joshua M. Weiss & Itai Yanai & Richard M. White, 2021. "Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Amanda Janesick & Robert Shelansky & Andrew D. Gottscho & Florian Wagner & Stephen R. Williams & Morgane Rouault & Ghezal Beliakoff & Carolyn A. Morrison & Michelli F. Oliveira & Jordan T. Sicherman &, 2023. "High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    5. Zixuan Cang & Qing Nie, 2020. "Inferring spatial and signaling relationships between cells from single cell transcriptomic data," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Esha Madan & Christopher J. Pelham & Masaki Nagane & Taylor M. Parker & Rita Canas-Marques & Kimberly Fazio & Kranti Shaik & Youzhong Yuan & Vanessa Henriques & Antonio Galzerano & Tadashi Yamashita &, 2019. "Flower isoforms promote competitive growth in cancer," Nature, Nature, vol. 572(7768), pages 260-264, August.
    7. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Christoph Kuppe & Ricardo O. Ramirez Flores & Zhijian Li & Sikander Hayat & Rebecca T. Levinson & Xian Liao & Monica T. Hannani & Jovan Tanevski & Florian Wünnemann & James S. Nagai & Maurice Halder &, 2022. "Spatial multi-omic map of human myocardial infarction," Nature, Nature, vol. 608(7924), pages 766-777, August.
    9. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    10. Taghreed Hirz & Shenglin Mei & Hirak Sarkar & Youmna Kfoury & Shulin Wu & Bronte M. Verhoeven & Alexander O. Subtelny & Dimitar V. Zlatev & Matthew W. Wszolek & Keyan Salari & Evan Murray & Fei Chen &, 2023. "Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoyang Li & Yingxin Lin & Wenjia He & Wenkai Han & Xiaopeng Xu & Chencheng Xu & Elva Gao & Hongyu Zhao & Xin Gao, 2024. "SANTO: a coarse-to-fine alignment and stitching method for spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ruonan Tian & Ziwei Xue & Yiru Chen & Yicheng Qi & Jian Zhang & Jie Yuan & Dengfeng Ruan & Junxin Lin & Jia Liu & Di Wang & Youqiong Ye & Wanlu Liu, 2025. "Integrating cross-sample and cross-modal data for spatial transcriptomics and metabolomics with SpatialMETA," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Yahui Long & Kok Siong Ang & Mengwei Li & Kian Long Kelvin Chong & Raman Sethi & Chengwei Zhong & Hang Xu & Zhiwei Ong & Karishma Sachaphibulkij & Ao Chen & Li Zeng & Huazhu Fu & Min Wu & Lina Hsiu Ki, 2023. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Pengfei Ren & Rui Zhang & Yunfeng Wang & Peng Zhang & Ce Luo & Suyan Wang & Xiaohong Li & Zongxu Zhang & Yanping Zhao & Yufeng He & Haorui Zhang & Yufeng Li & Zhidong Gao & Xiuping Zhang & Yahui Zhao , 2025. "Systematic benchmarking of high-throughput subcellular spatial transcriptomics platforms across human tumors," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Eduard Chelebian & Christophe Avenel & Carolina Wählby, 2025. "Combining spatial transcriptomics with tissue morphology," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Kang Jin & Zuobai Zhang & Ke Zhang & Francesca Viggiani & Claire Callahan & Jian Tang & Bruce J. Aronow & Jian Shu, 2025. "Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    7. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Chen-Rui Xia & Zhi-Jie Cao & Ge Gao, 2025. "DECIPHER for learning disentangled cellular embeddings in large-scale heterogeneous spatial omics data," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Pengzhi Zhang & Weiqing Chen & Tu N. Tran & Minghao Zhou & Kaylee N. Carter & Ibrahem Kandel & Shengyu Li & Xen Ping Hoi & Yuxing Sun & Li Lai & Keith Youker & Qianqian Song & Yu Yang & Fotis Nikolos , 2025. "Thor: a platform for cell-level investigation of spatial transcriptomics and histology," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    14. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Shuangsang Fang & Mengyang Xu & Lei Cao & Xiaobin Liu & Marija Bezulj & Liwei Tan & Zhiyuan Yuan & Yao Li & Tianyi Xia & Longyu Guo & Vladimir Kovacevic & Junhou Hui & Lidong Guo & Chao Liu & Mengnan , 2025. "Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    16. Chunman Zuo & Junjie Xia & Yupeng Xu & Ying Xu & Pingting Gao & Jing Zhang & Yan Wang & Luonan Chen, 2025. "stClinic dissects clinically relevant niches by integrating spatial multi-slice multi-omics data in dynamic graphs," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    17. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Antti Kiviaho & Sini K. Eerola & Heini M. L. Kallio & Maria K. Andersen & Miina Hoikka & Aliisa M. Tiihonen & Iida Salonen & Xander Spotbeen & Alexander Giesen & Charles T. A. Parker & Sinja Taavitsai, 2024. "Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Bohan Li & Feng Bao & Yimin Hou & Fengji Li & Hongjue Li & Yue Deng & Qionghai Dai, 2024. "Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62782-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.