IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58079-9.html
   My bibliography  Save this article

Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics

Author

Listed:
  • Shuangsang Fang

    (BGI Research
    BGI Research)

  • Mengyang Xu

    (BGI Research
    BGI Research)

  • Lei Cao

    (BGI Research
    BGI Research)

  • Xiaobin Liu

    (BGI Research)

  • Marija Bezulj

    (BGI Research)

  • Liwei Tan

    (BGI Research)

  • Zhiyuan Yuan

    (Fudan University)

  • Yao Li

    (BGI Research)

  • Tianyi Xia

    (BGI Research
    BGI Research)

  • Longyu Guo

    (BGI Research)

  • Vladimir Kovacevic

    (BGI Research)

  • Junhou Hui

    (BGI Research)

  • Lidong Guo

    (BGI Research
    University of Chinese Academy of Sciences)

  • Chao Liu

    (BGI Research)

  • Mengnan Cheng

    (BGI Research
    BGI Research)

  • Li’ang Lin

    (BGI Research)

  • Zhenbin Wen

    (BGI Research)

  • Bojana Josic

    (BGI Research)

  • Nikola Milicevic

    (BGI Research)

  • Ping Qiu

    (BGI Research)

  • Qin Lu

    (BGI Research)

  • Yumei Li

    (BGI Research)

  • Leying Wang

    (BGI Research)

  • Luni Hu

    (BGI Research
    BGI Research)

  • Chao Zhang

    (BGI Research)

  • Qiang Kang

    (BGI Research)

  • Fengzhen Chen

    (BGI Research)

  • Ziqing Deng

    (BGI Research)

  • Junhua Li

    (BGI Research
    BGI Research
    BGI Research)

  • Mei Li

    (BGI Research)

  • Shengkang Li

    (BGI Research)

  • Yi Zhao

    (Chinese Academy of Sciences)

  • Guangyi Fan

    (BGI Research
    BGI Research)

  • Yong Zhang

    (BGI Research
    BGI Research
    BGI research)

  • Ao Chen

    (BGI Research)

  • Yuxiang Li

    (BGI Research
    BGI Research
    BGI research)

  • Xun Xu

    (BGI Research)

Abstract

Understanding complex biological systems requires tracing cellular dynamic changes across conditions, time, and space. However, integrating multi-sample data in a unified way to explore cellular heterogeneity remains challenging. Here, we present Stereopy, a flexible framework for modeling and dissecting comparative and spatiotemporal patterns in multi-sample spatial transcriptomics with interactive data visualization. To optimize this framework, we devise a universal container, a scope controller, and an integrative transformer tailored for multi-sample multimodal data storage, management, and processing. Stereopy showcases three representative applications: investigating specific cell communities and genes responsible for pathological changes, detecting spatiotemporal gene patterns by considering spatial and temporal features, and inferring three-dimensional niche-based cell-gene interaction network that bridges intercellular communications and intracellular regulations. Stereopy serves as both a comprehensive bioinformatics toolbox and an extensible framework that empowers researchers with enhanced data interpretation abilities and new perspectives for mining multi-sample spatial transcriptomics data.

Suggested Citation

  • Shuangsang Fang & Mengyang Xu & Lei Cao & Xiaobin Liu & Marija Bezulj & Liwei Tan & Zhiyuan Yuan & Yao Li & Tianyi Xia & Longyu Guo & Vladimir Kovacevic & Junhou Hui & Lidong Guo & Chao Liu & Mengnan , 2025. "Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58079-9
    DOI: 10.1038/s41467-025-58079-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58079-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58079-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luz Garcia-Alonso & Valentina Lorenzi & Cecilia Icoresi Mazzeo & João Pedro Alves-Lopes & Kenny Roberts & Carmen Sancho-Serra & Justin Engelbert & Magda Marečková & Wolfram H. Gruhn & Rachel A. Bottin, 2022. "Single-cell roadmap of human gonadal development," Nature, Nature, vol. 607(7919), pages 540-547, July.
    2. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Amanda Janesick & Robert Shelansky & Andrew D. Gottscho & Florian Wagner & Stephen R. Williams & Morgane Rouault & Ghezal Beliakoff & Carolyn A. Morrison & Michelli F. Oliveira & Jordan T. Sicherman &, 2023. "High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Author Correction: Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    5. Wenpin Hou & Zhicheng Ji & Zeyu Chen & E. John Wherry & Stephanie C. Hicks & Hongkai Ji, 2023. "A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    7. Yingxin Lin & Yue Cao & Elijah Willie & Ellis Patrick & Jean Y. H. Yang, 2023. "Atlas-scale single-cell multi-sample multi-condition data integration using scMerge2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Yahui Long & Kok Siong Ang & Mengwei Li & Kian Long Kelvin Chong & Raman Sethi & Chengwei Zhong & Hang Xu & Zhiwei Ong & Karishma Sachaphibulkij & Ao Chen & Li Zeng & Huazhu Fu & Min Wu & Lina Hsiu Ki, 2023. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Tianyi Xia & Luni Hu & Lulu Zuo & Lei Cao & Yunjia Zhang & Mengyang Xu & Qin Lu & Lei Zhang & Taotao Pan & Bohan Zhang & Bowen Ma & Chuan Chen & Junfu Guo & Chang Shi & Mei Li & Chao Liu & Yuxiang Li , 2024. "ST-GEARS: Advancing 3D downstream research through accurate spatial information recovery," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Daniel Dimitrov & Dénes Türei & Martin Garrido-Rodriguez & Paul L. Burmedi & James S. Nagai & Charlotte Boys & Ricardo O. Ramirez Flores & Hyojin Kim & Bence Szalai & Ivan G. Costa & Alberto Valdeoliv, 2022. "Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Antonio Agostini & Geny Piro & Frediano Inzani & Giuseppe Quero & Annachiara Esposito & Alessia Caggiano & Lorenzo Priori & Alberto Larghi & Sergio Alfieri & Raffaella Casolino & Giulia Scaglione & Vi, 2024. "Identification of spatially-resolved markers of malignant transformation in Intraductal Papillary Mucinous Neoplasms," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Kaichen Xu & Yan Lu & Suyang Hou & Kainan Liu & Yihang Du & Mengqian Huang & Hao Feng & Hao Wu & Xiaobo Sun, 2024. "Detecting anomalous anatomic regions in spatial transcriptomics with STANDS," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    4. Yuma Takano & Jun Suzuki & Kotaro Nomura & Gento Fujii & Junko Zenkoh & Hitomi Kawai & Yuta Kuze & Yukie Kashima & Satoi Nagasawa & Yuka Nakamura & Motohiro Kojima & Katsuya Tsuchihara & Masahide Seki, 2024. "Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Mingze Dong & David G. Su & Harriet Kluger & Rong Fan & Yuval Kluger, 2025. "SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Xu Liao & Lican Kang & Yihao Peng & Xiaoran Chai & Peng Xie & Chengqi Lin & Hongkai Ji & Yuling Jiao & Jin Liu, 2024. "Multivariate stochastic modeling for transcriptional dynamics with cell-specific latent time using SDEvelo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Peng Zhang & Chaofei Gao & Zhuoyu Zhang & Zhiyuan Yuan & Qian Zhang & Ping Zhang & Shiyu Du & Weixun Zhou & Yan Li & Shao Li, 2025. "Systematic inference of super-resolution cell spatial profiles from histology images," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    11. Bohan Li & Feng Bao & Yimin Hou & Fengji Li & Hongjue Li & Yue Deng & Qionghai Dai, 2024. "Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yuqiao Gong & Xin Yuan & Qiong Jiao & Zhangsheng Yu, 2025. "Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Xin Shao & Chengyu Li & Haihong Yang & Xiaoyan Lu & Jie Liao & Jingyang Qian & Kai Wang & Junyun Cheng & Penghui Yang & Huajun Chen & Xiao Xu & Xiaohui Fan, 2022. "Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Hikaru Hayashi & Sayaka Seki & Takeshi Tomita & Masayoshi Kato & Norihiro Ashihara & Tokuhiro Chano & Hideki Sanjo & Miwa Kawade & Chenhui Yan & Hiroki Sakai & Hidenori Tomida & Miyuki Tanaka & Mai Iw, 2025. "Synthetic short mRNA prevents metastasis via innate-adaptive immunity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    17. Guillermo Serrano & Nerea Berastegui & Aintzane Díaz-Mazkiaran & Paula García-Olloqui & Carmen Rodriguez-Res & Sofia Huerga-Dominguez & Marina Ainciburu & Amaia Vilas-Zornoza & Patxi San Martin-Uriz &, 2024. "Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58079-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.