IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63140-8.html
   My bibliography  Save this article

DECIPHER for learning disentangled cellular embeddings in large-scale heterogeneous spatial omics data

Author

Listed:
  • Chen-Rui Xia

    (Peking University
    Changping Laboratory)

  • Zhi-Jie Cao

    (Peking University
    Changping Laboratory)

  • Ge Gao

    (Peking University
    Changping Laboratory)

Abstract

The functional role of a cell, shaped by the sophisticated interplay between its molecular identity and spatial context, is often obscured in current spatial modeling. In efforts to model large-scale heterogeneous spatial data in silico effectively and efficiently, we introduce DECIPHER, which disentangles cells’ intra-cellular and extra-cellular representation through a novel cross-scale contrast learning strategy. In addition to superior performance over state-of-arts, systematic benchmarks and various real-world case studies showed that the disentangled embeddings produced by DECIPHER enable delineating cell-environment interaction across multiple scales. Of note, DECIPHER is highly scalable, capable of handling spatial atlases with millions of cells which is largely infeasible for existing methods.

Suggested Citation

  • Chen-Rui Xia & Zhi-Jie Cao & Ge Gao, 2025. "DECIPHER for learning disentangled cellular embeddings in large-scale heterogeneous spatial omics data," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63140-8
    DOI: 10.1038/s41467-025-63140-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63140-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63140-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63140-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.