IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10861-2.html
   My bibliography  Save this article

A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys

Author

Listed:
  • Blue B. Lake

    (University of California, San Diego)

  • Song Chen

    (University of California, San Diego)

  • Masato Hoshi

    (Washington University School of Medicine)

  • Nongluk Plongthongkum

    (University of California, San Diego
    King Mongkut’s University of Technology)

  • Diane Salamon

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Amanda Knoten

    (Washington University School of Medicine)

  • Anitha Vijayan

    (Washington University School of Medicine)

  • Ramakrishna Venkatesh

    (Washington University School of Medicine)

  • Eric H. Kim

    (Washington University School of Medicine)

  • Derek Gao

    (University of California, San Diego)

  • Joseph Gaut

    (Washington University School of Medicine)

  • Kun Zhang

    (University of California, San Diego)

  • Sanjay Jain

    (Washington University School of Medicine
    Washington University School of Medicine)

Abstract

Defining cellular and molecular identities within the kidney is necessary to understand its organization and function in health and disease. Here we demonstrate a reproducible method with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that we use to resolve thirty distinct cell populations in human adult kidney. We define molecular transition states along more than ten nephron segments spanning two major kidney regions. We further delineate cell type-specific expression of genes associated with chronic kidney disease, diabetes and hypertension, providing insight into possible targeted therapies. This includes expression of a hypertension-associated mechano-sensory ion channel in mesangial cells, and identification of proximal tubule cell populations defined by pathogenic expression signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes a tool for the generation of healthy and diseased molecular atlases applicable to clinical samples.

Suggested Citation

  • Blue B. Lake & Song Chen & Masato Hoshi & Nongluk Plongthongkum & Diane Salamon & Amanda Knoten & Anitha Vijayan & Ramakrishna Venkatesh & Eric H. Kim & Derek Gao & Joseph Gaut & Kun Zhang & Sanjay Ja, 2019. "A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10861-2
    DOI: 10.1038/s41467-019-10861-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10861-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10861-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haojia Wu & Eryn E. Dixon & Qiao Xuanyuan & Juanru Guo & Yasuhiro Yoshimura & Chitnis Debashish & Anezka Niesnerova & Hao Xu & Morgane Rouault & Benjamin D. Humphreys, 2024. "High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Jie Liao & Jingyang Qian & Yin Fang & Zhuo Chen & Xiang Zhuang & Ningyu Zhang & Xin Shao & Yining Hu & Penghui Yang & Junyun Cheng & Yang Hu & Lingqi Yu & Haihong Yang & Jinlu Zhang & Xiaoyan Lu & Li , 2022. "De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Victor Hugo Canela & William S. Bowen & Ricardo Melo Ferreira & Farooq Syed & James E. Lingeman & Angela R. Sabo & Daria Barwinska & Seth Winfree & Blue B. Lake & Ying-Hua Cheng & Joseph P. Gaut & Mic, 2023. "A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Kian Kalhor & Chien-Ju Chen & Ho Suk Lee & Matthew Cai & Mahsa Nafisi & Richard Que & Carter R. Palmer & Yixu Yuan & Yida Zhang & Xuwen Li & Jinghui Song & Amanda Knoten & Blue B. Lake & Joseph P. Gau, 2024. "Mapping human tissues with highly multiplexed RNA in situ hybridization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Bujamin H. Vokshi & Guillaume Davidson & Nassim Tawanaie Pour Sedehi & Alexandra Helleux & Marc Rippinger & Alexandre R. Haller & Justine Gantzer & Jonathan Thouvenin & Philippe Baltzinger & Rachida B, 2023. "SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Fei Wang & Peiwen Ding & Xue Liang & Xiangning Ding & Camilla Blunk Brandt & Evelina Sjöstedt & Jiacheng Zhu & Saga Bolund & Lijing Zhang & Laura P. M. H. Rooij & Lihua Luo & Yanan Wei & Wandong Zhao , 2022. "Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Baptiste Lamarthée & Jasper Callemeyn & Yannick Van Herck & Asier Antoranz & Dany Anglicheau & Patrick Boada & Jan Ulrich Becker & Tim Debyser & Frederik De Smet & Katrien De Vusser & Maëva Eloudzeri , 2023. "Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Yoshiharu Muto & Eryn E. Dixon & Yasuhiro Yoshimura & Haojia Wu & Kohei Omachi & Nicolas Ledru & Parker C. Wilson & Andrew J. King & N. Eric Olson & Marvin G. Gunawan & Jay J. Kuo & Jennifer H. Cox & , 2022. "Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10861-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.