IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v511y2014i7511d10.1038_nature13321.html
   My bibliography  Save this article

Equalizing excitation–inhibition ratios across visual cortical neurons

Author

Listed:
  • Mingshan Xue

    (Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California 92093-0634, USA
    University of California, San Diego, La Jolla, California 92093-0634, USA
    Present address: Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA, and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas 77030, USA.)

  • Bassam V. Atallah

    (Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal)

  • Massimo Scanziani

    (Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California 92093-0634, USA
    University of California, San Diego, La Jolla, California 92093-0634, USA
    Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0634, USA)

Abstract

Different amounts of excitation received by different pyramidal cells of primary visual cortex are matched by proportional amounts of inhibition.

Suggested Citation

  • Mingshan Xue & Bassam V. Atallah & Massimo Scanziani, 2014. "Equalizing excitation–inhibition ratios across visual cortical neurons," Nature, Nature, vol. 511(7511), pages 596-600, July.
  • Handle: RePEc:nat:nature:v:511:y:2014:i:7511:d:10.1038_nature13321
    DOI: 10.1038/nature13321
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13321
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Hongyu Shen & Xun Huang & Yiheng Zhao & Dongmei Wu & Kaili Xue & Jingfei Yao & Yushuang Wang & Nan Tang & Yifu Qiu, 2022. "The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Xiao-Qin Zhang & Le Xu & Xin-Yi Zhu & Zi-Hang Tang & Yi-Bei Dong & Zhi-Peng Yu & Qing Shang & Zheng-Chun Wang & Hao-Wei Shen, 2023. "D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Daniel M. Virga & Stevie Hamilton & Bertha Osei & Abigail Morgan & Parker Kneis & Emiliano Zamponi & Natalie J. Park & Victoria L. Hewitt & David Zhang & Kevin C. Gonzalez & Fiona M. Russell & D. Grah, 2024. "Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:511:y:2014:i:7511:d:10.1038_nature13321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.