IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42053-4.html
   My bibliography  Save this article

Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes

Author

Listed:
  • Yaqian Yang

    (Beihang University
    Beihang University)

  • Zhiming Zheng

    (Beihang University
    Beihang University
    Beihang University
    Zhongguancun Laboratory)

  • Longzhao Liu

    (Beihang University
    Beihang University
    Beihang University
    Zhongguancun Laboratory)

  • Hongwei Zheng

    (Beihang University
    Beijing Academy of Blockchain and Edge Computing (BABEC))

  • Yi Zhen

    (Beihang University
    Beihang University)

  • Yi Zheng

    (Beihang University
    Beihang University)

  • Xin Wang

    (Beihang University
    Beihang University
    Beihang University
    Zhongguancun Laboratory)

  • Shaoting Tang

    (Beihang University
    Beihang University
    Beihang University
    Zhongguancun Laboratory)

Abstract

While the link between brain structure and function remains an ongoing challenge, the prevailing hypothesis is that the structure-function relationship may itself be gradually decoupling from unimodal to transmodal cortex. However, this hypothesis is constrained by the underlying models which may neglect requisite information. Here we relate structural and functional connectivity derived from diffusion and functional MRI through orthogonal eigenmodes governing frequency-specific diffusion patterns. We find that low-frequency eigenmodes contribute little to functional interactions in transmodal cortex, resulting in divergent structure-function relationships. Conversely, high-frequency eigenmodes predominantly support neuronal coactivation patterns in these areas, inducing structure-function convergence along a unimodal-transmodal hierarchy. High-frequency information, although weak and scattered, could enhance the structure-function tethering, especially in transmodal association cortices. Our findings suggest that the structure-function decoupling may not be an intrinsic property of brain organization, but can be narrowed through multiplexed and regionally specialized spatiotemporal propagation regimes.

Suggested Citation

  • Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42053-4
    DOI: 10.1038/s41467-023-42053-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42053-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42053-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zijin Gu & Keith Wakefield Jamison & Mert Rory Sabuncu & Amy Kuceyeski, 2021. "Heritability and interindividual variability of regional structure-function coupling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    3. Kenneth D. Harris & Thomas D. Mrsic-Flogel, 2013. "Cortical connectivity and sensory coding," Nature, Nature, vol. 503(7474), pages 51-58, November.
    4. Klaus H. Maier-Hein & Peter F. Neher & Jean-Christophe Houde & Marc-Alexandre Côté & Eleftherios Garyfallidis & Jidan Zhong & Maxime Chamberland & Fang-Cheng Yeh & Ying-Chia Lin & Qing Ji & Wilburn E., 2017. "The challenge of mapping the human connectome based on diffusion tractography," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    5. John D. Medaglia & Weiyu Huang & Elisabeth A. Karuza & Apoorva Kelkar & Sharon L. Thompson-Schill & Alejandro Ribeiro & Danielle S. Bassett, 2018. "Functional alignment with anatomical networks is associated with cognitive flexibility," Nature Human Behaviour, Nature, vol. 2(2), pages 156-164, February.
    6. Selen Atasoy & Isaac Donnelly & Joel Pearson, 2016. "Human brain networks function in connectome-specific harmonic waves," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    7. Maria Giulia Preti & Dimitri Van De Ville, 2019. "Decoupling of brain function from structure reveals regional behavioral specialization in humans," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. Farnaz Zamani Esfahlani & Joshua Faskowitz & Jonah Slack & Bratislav Mišić & Richard F. Betzel, 2022. "Local structure-function relationships in human brain networks across the lifespan," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    4. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Andrew D. Grotzinger & Travis T. Mallard & Zhaowen Liu & Jakob Seidlitz & Tian Ge & Jordan W. Smoller, 2023. "Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Justine Y. Hansen & Golia Shafiei & Jacob W. Vogel & Kelly Smart & Carrie E. Bearden & Martine Hoogman & Barbara Franke & Daan Rooij & Jan Buitelaar & Carrie R. McDonald & Sanjay M. Sisodiya & Lianne , 2022. "Local molecular and global connectomic contributions to cross-disorder cortical abnormalities," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Matthijs N. Oude Lohuis & Jean L. Pie & Pietro Marchesi & Jorrit S. Montijn & Christiaan P. J. Kock & Cyriel M. A. Pennartz & Umberto Olcese, 2022. "Multisensory task demands temporally extend the causal requirement for visual cortex in perception," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Loïc Labache & Tian Ge & B. T. Thomas Yeo & Avram J. Holmes, 2023. "Language network lateralization is reflected throughout the macroscale functional organization of cortex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    14. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    15. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    16. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    17. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    19. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    20. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42053-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.