IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62812-9.html
   My bibliography  Save this article

Mapping the coupling between tract reachability and cortical geometry of the human brain

Author

Listed:
  • Deying Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Andrew Zalesky

    (The University of Melbourne
    The University of Melbourne)

  • Yufan Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haiyan Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Liang Ma

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Luqi Cheng

    (Guilin University of Electronic Technology)

  • Tobias Banaschewski

    (Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, German Center for Mental Health (DZPG))

  • Gareth J. Barker

    (King’s College London)

  • Arun L. W. Bokde

    (Trinity College Dublin)

  • Rüdiger Brühl

    (Braunschweig and Berlin)

  • Sylvane Desrivières

    (King’s College London)

  • Herta Flor

    (Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University
    University of Mannheim)

  • Hugh Garavan

    (University of Vermont)

  • Penny Gowland

    (University Park)

  • Antoine Grigis

    (Université Paris-Saclay)

  • Andreas Heinz

    (Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health)

  • Hervé Lemaître

    (Université Paris-Saclay
    Université de Bordeaux)

  • Jean-Luc Martinot

    (Ecole Normale Supérieure Paris-Saclay; Centre Borelli CNRS 9010)

  • Marie-Laure Paillère Martinot

    (Ecole Normale Supérieure Paris-Saclay; Centre Borelli CNRS 9010
    Pitié-Salpêtrière Hospital)

  • Eric Artiges

    (Ecole Normale Supérieure Paris-Saclay; Centre Borelli CNRS 9010
    EPS Barthélémy Durand)

  • Frauke Nees

    (Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, German Center for Mental Health (DZPG)
    Kiel University)

  • Dimitri Papadopoulos Orfanos

    (University of Mannheim)

  • Luise Poustka

    (University Hospital Heidelberg)

  • Michael N. Smolka

    (Technische Universität Dresden)

  • Nilakshi Vaidya

    (Charité Universitätsmedizin Berlin)

  • Henrik Walter

    (Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health)

  • Robert Whelan

    (Trinity College Dublin)

  • Gunter Schumann

    (Technische Universität Dresden
    Fudan University)

  • Tianye Jia

    (Fudan University
    Fudan University
    Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University)
    King’s College London)

  • Congying Chu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Lingzhong Fan

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Health and Rehabilitation Sciences)

Abstract

The study of cortical geometry and connectivity is prevalent in human brain research. However, these two aspects of brain structure are usually examined separately, leaving the essential connections between the brain’s folding patterns and white matter connectivity unexplored. In this study, we aim to elucidate the fundamental links between cortical geometry and white matter tract connectivity. We develop the concept of tract-geometry coupling (TGC) by optimizing the alignment between tract connectivity to the cortex and multiscale cortical geometry. We confirm in two independent datasets that cortical geometry reliably characterizes tract reachability, and that TGC demonstrates high test-retest reliability and individual-specificity. Interestingly, low-frequency TGC is more heritable and behaviorally informative. Finally, we find that TGC can reproduce task-evoked cortical activation patterns and exhibits non-uniform maturation during youth. Collectively, our study provides an approach to mapping cortical geometry-connectivity coupling, highlighting how these two aspects jointly shape the connected brain.

Suggested Citation

  • Deying Li & Andrew Zalesky & Yufan Wang & Haiyan Wang & Liang Ma & Luqi Cheng & Tobias Banaschewski & Gareth J. Barker & Arun L. W. Bokde & Rüdiger Brühl & Sylvane Desrivières & Herta Flor & Hugh Gara, 2025. "Mapping the coupling between tract reachability and cortical geometry of the human brain," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62812-9
    DOI: 10.1038/s41467-025-62812-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62812-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62812-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang-Cheng Yeh, 2022. "Population-based tract-to-region connectome of the human brain and its hierarchical topology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Evelyn Tang & Chad Giusti & Graham L. Baum & Shi Gu & Eli Pollock & Ari E. Kahn & David R. Roalf & Tyler M. Moore & Kosha Ruparel & Ruben C. Gur & Raquel E. Gur & Theodore D. Satterthwaite & Danielle , 2017. "Developmental increases in white matter network controllability support a growing diversity of brain dynamics," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    3. Maria Giulia Preti & Dimitri Van De Ville, 2019. "Decoupling of brain function from structure reveals regional behavioral specialization in humans," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Vyacheslav R. Karolis & Maurizio Corbetta & Michel Thiebaut de Schotten, 2019. "The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    6. Ernst Schwartz & Karl-Heinz Nenning & Katja Heuer & Nathan Jeffery & Ornella C. Bertrand & Roberto Toro & Gregor Kasprian & Daniela Prayer & Georg Langs, 2023. "Evolution of cortical geometry and its link to function, behaviour and ecology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    9. Kara E. Garcia & Xiaojie Wang & Christopher D. Kroenke, 2021. "A model of tension-induced fiber growth predicts white matter organization during brain folding," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. David C. Van Essen, 1997. "A tension-based theory of morphogenesis and compact wiring in the central nervous system," Nature, Nature, vol. 385(6614), pages 313-318, January.
    11. Klaus H. Maier-Hein & Peter F. Neher & Jean-Christophe Houde & Marc-Alexandre Côté & Eleftherios Garyfallidis & Jidan Zhong & Maxime Chamberland & Fang-Cheng Yeh & Ying-Chia Lin & Qing Ji & Wilburn E., 2017. "The challenge of mapping the human connectome based on diffusion tractography," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    12. Shi Gu & Fabio Pasqualetti & Matthew Cieslak & Qawi K. Telesford & Alfred B. Yu & Ari E. Kahn & John D. Medaglia & Jean M. Vettel & Michael B. Miller & Scott T. Grafton & Danielle S. Bassett, 2015. "Controllability of structural brain networks," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    13. James C. Pang & Kevin M. Aquino & Marianne Oldehinkel & Peter A. Robinson & Ben D. Fulcher & Michael Breakspear & Alex Fornito, 2023. "Geometric constraints on human brain function," Nature, Nature, vol. 618(7965), pages 566-574, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea I. Luppi & Helena M. Gellersen & Zhen-Qi Liu & Alexander R. D. Peattie & Anne E. Manktelow & Ram Adapa & Adrian M. Owen & Lorina Naci & David K. Menon & Stavros I. Dimitriadis & Emmanuel A. Sta, 2024. "Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Jacob Tanner & Joshua Faskowitz & Andreia Sofia Teixeira & Caio Seguin & Ludovico Coletta & Alessandro Gozzi & Bratislav Mišić & Richard F. Betzel, 2024. "A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    8. Zongchang Du & Congying Chu & Weiyang Shi & Na Luo & Yuheng Lu & Haiyan Wang & Bokai Zhao & Hui Xiong & Zhengyi Yang & Tianzi Jiang, 2025. "Connectome-constrained ligand-receptor interaction analysis for understanding brain network communication," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Valentina Pacella & Victor Nozais & Lia Talozzi & Majd Abdallah & Demian Wassermann & Stephanie J. Forkel & Michel Thiebaut de Schotten, 2024. "The morphospace of the brain-cognition organisation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Evan Collins & Omar Chishti & Sami Obaid & Hari McGrath & Alex King & Xilin Shen & Jagriti Arora & Xenophon Papademetris & R. Todd Constable & Dennis D. Spencer & Hitten P. Zaveri, 2024. "Mapping the structure-function relationship along macroscale gradients in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Huili Sun & Rongtao Jiang & Wei Dai & Alexander J. Dufford & Stephanie Noble & Marisa N. Spann & Shi Gu & Dustin Scheinost, 2023. "Network controllability of structural connectomes in the neonatal brain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. S. Parker Singleton & Andrea I. Luppi & Robin L. Carhart-Harris & Josephine Cruzat & Leor Roseman & David J. Nutt & Gustavo Deco & Morten L. Kringelbach & Emmanuel A. Stamatakis & Amy Kuceyeski, 2022. "Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    14. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    15. Bruton, Oliver J., 2021. "Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron," Intelligence, Elsevier, vol. 86(C).
    16. Audrey C. Luo & Valerie J. Sydnor & Adam Pines & Bart Larsen & Aaron F. Alexander-Bloch & Matthew Cieslak & Sydney Covitz & Andrew A. Chen & Nathalia Bianchini Esper & Eric Feczko & Alexandre R. Franc, 2024. "Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Loïc Labache & Tian Ge & B. T. Thomas Yeo & Avram J. Holmes, 2023. "Language network lateralization is reflected throughout the macroscale functional organization of cortex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Max Korbmacher & Dennis Meer & Dani Beck & Ann-Marie G. de Lange & Eli Eikefjord & Arvid Lundervold & Ole A. Andreassen & Lars T. Westlye & Ivan I. Maximov, 2024. "Brain asymmetries from mid- to late life and hemispheric brain age," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Christopher Muller & Daniel Schrage, 2014. "Mass Imprisonment and Trust in the Law," The ANNALS of the American Academy of Political and Social Science, , vol. 651(1), pages 139-158, January.
    20. Tetsuya Tsurumi & Shunsuke Managi, 2025. "Income and Subjective Well-Being: The Importance of Index Choice for Sustainable Economic Development," Sustainability, MDPI, vol. 17(12), pages 1-32, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62812-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.