IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41187-9.html
   My bibliography  Save this article

Monolithic FAPbBr3 photoanode for photoelectrochemical water oxidation with low onset-potential and enhanced stability

Author

Listed:
  • Hao Yang

    (KTH Royal Institute of Technology)

  • Yawen Liu

    (Uppsala University)

  • Yunxuan Ding

    (Westlake University)

  • Fusheng Li

    (Dalian University of Technology)

  • Linqin Wang

    (Westlake University)

  • Bin Cai

    (Uppsala University)

  • Fuguo Zhang

    (KTH Royal Institute of Technology)

  • Tianqi Liu

    (KTH Royal Institute of Technology)

  • Gerrit Boschloo

    (Uppsala University)

  • Erik M. J. Johansson

    (Uppsala University)

  • Licheng Sun

    (KTH Royal Institute of Technology
    Westlake University
    Dalian University of Technology)

Abstract

Despite considerable research efforts on photoelectrochemical water splitting over the past decades, practical application faces challenges by the absence of efficient, stable, and scalable photoelectrodes. Herein, we report a metal-halide perovskite-based photoanode for photoelectrochemical water oxidation. With a planar structure using mesoporous carbon as a hole-conducting layer, the precious metal-free FAPbBr3 photovoltaic device achieves 9.2% solar-to-electrical power conversion efficiency and 1.4 V open-circuit voltage. The photovoltaic architecture successfully applies to build a monolithic photoanode with the FAPbBr3 absorber, carbon/graphite conductive protection layers, and NiFe catalyst layers for water oxidation. The photoanode delivers ultralow onset potential below 0 V versus the reversible hydrogen electrode and high applied bias photon-to-current efficiency of 8.5%. Stable operation exceeding 100 h under solar illumination by applying ultraviolet-filter protection. The photothermal investigation verifies the performance boost in perovskite photoanode by photothermal effect. This study is significant in guiding the development of photovoltaic material-based photoelectrodes for solar fuel applications.

Suggested Citation

  • Hao Yang & Yawen Liu & Yunxuan Ding & Fusheng Li & Linqin Wang & Bin Cai & Fuguo Zhang & Tianqi Liu & Gerrit Boschloo & Erik M. J. Johansson & Licheng Sun, 2023. "Monolithic FAPbBr3 photoanode for photoelectrochemical water oxidation with low onset-potential and enhanced stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41187-9
    DOI: 10.1038/s41467-023-41187-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41187-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41187-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konrad Domanski & Essa A. Alharbi & Anders Hagfeldt & Michael Grätzel & Wolfgang Tress, 2018. "Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells," Nature Energy, Nature, vol. 3(1), pages 61-67, January.
    2. Wolfgang Tress & Konrad Domanski & Brian Carlsen & Anand Agarwalla & Essa A. Alharbi & Michael Graetzel & Anders Hagfeldt, 2019. "Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions," Nature Energy, Nature, vol. 4(7), pages 568-574, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasiliki Paraskeva & Maria Hadjipanayi & Matthew Norton & Aranzazu Aguirre & Afshin Hadipour & Wenya Song & Tommaso Fontanot & Silke Christiansen & Rita Ebner & George E. Georghiou, 2023. "Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives," Energies, MDPI, vol. 16(6), pages 1-18, March.
    2. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    3. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Performance evaluation and optimization of a perovskite solar cell-thermoelectric generator hybrid system," Energy, Elsevier, vol. 201(C).
    4. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    5. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    6. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    7. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    8. Seonggon Kim & Jong Ha Park & Jae Won Lee & Yongchan Kim & Yong Tae Kang, 2023. "Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Noor Titan Putri Hartono & Hans Köbler & Paolo Graniero & Mark Khenkin & Rutger Schlatmann & Carolin Ulbrich & Antonio Abate, 2023. "Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    11. Aleksandrova, M.P., 2023. "Study of lead-free perovskite photoconverting structures by impedance spectroscopy," Energy, Elsevier, vol. 273(C).
    12. Issa M.Aziz, 2023. "A review of thin film solar cell," Technium, Technium Science, vol. 10(1), pages 6-13.
    13. Luigi Vesce & Maurizio Stefanelli & Aldo Di Carlo, 2021. "Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer," Energies, MDPI, vol. 14(19), pages 1-8, September.
    14. Michael Saliba & Eva Unger & Lioz Etgar & Jingshan Luo & T. Jesper Jacobsson, 2023. "A systematic discrepancy between the short circuit current and the integrated quantum efficiency in perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    15. Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Mohamed M. H. Desoky & Matteo Bonomo & Roberto Buscaino & Andrea Fin & Guido Viscardi & Claudia Barolo & Pierluigi Quagliotto, 2021. "Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships," Energies, MDPI, vol. 14(8), pages 1-49, April.
    18. Yujie Luo & Kaikai Liu & Liu Yang & Wenjing Feng & Lingfang Zheng & Lina Shen & Yongbin Jin & Zheng Fang & Peiquan Song & Wanjia Tian & Peng Xu & Yuqing Li & Chengbo Tian & Liqiang Xie & Zhanhua Wei, 2023. "Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41187-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.