IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i1d10.1038_s41560-017-0060-5.html
   My bibliography  Save this article

Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells

Author

Listed:
  • Konrad Domanski

    (Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne)

  • Essa A. Alharbi

    (Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne)

  • Anders Hagfeldt

    (Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne)

  • Michael Grätzel

    (Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne)

  • Wolfgang Tress

    (Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne
    Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne)

Abstract

Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.

Suggested Citation

  • Konrad Domanski & Essa A. Alharbi & Anders Hagfeldt & Michael Grätzel & Wolfgang Tress, 2018. "Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells," Nature Energy, Nature, vol. 3(1), pages 61-67, January.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:1:d:10.1038_s41560-017-0060-5
    DOI: 10.1038/s41560-017-0060-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-017-0060-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-017-0060-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Luo & Kaikai Liu & Liu Yang & Wenjing Feng & Lingfang Zheng & Lina Shen & Yongbin Jin & Zheng Fang & Peiquan Song & Wanjia Tian & Peng Xu & Yuqing Li & Chengbo Tian & Liqiang Xie & Zhanhua Wei, 2023. "Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    4. Noor Titan Putri Hartono & Hans Köbler & Paolo Graniero & Mark Khenkin & Rutger Schlatmann & Carolin Ulbrich & Antonio Abate, 2023. "Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Issa M.Aziz, 2023. "A review of thin film solar cell," Technium, Technium Science, vol. 10(1), pages 6-13.
    6. Michael Saliba & Eva Unger & Lioz Etgar & Jingshan Luo & T. Jesper Jacobsson, 2023. "A systematic discrepancy between the short circuit current and the integrated quantum efficiency in perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Vasiliki Paraskeva & Maria Hadjipanayi & Matthew Norton & Aranzazu Aguirre & Afshin Hadipour & Wenya Song & Tommaso Fontanot & Silke Christiansen & Rita Ebner & George E. Georghiou, 2023. "Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Mohamed M. H. Desoky & Matteo Bonomo & Roberto Buscaino & Andrea Fin & Guido Viscardi & Claudia Barolo & Pierluigi Quagliotto, 2021. "Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships," Energies, MDPI, vol. 14(8), pages 1-49, April.
    9. Hao Yang & Yawen Liu & Yunxuan Ding & Fusheng Li & Linqin Wang & Bin Cai & Fuguo Zhang & Tianqi Liu & Gerrit Boschloo & Erik M. J. Johansson & Licheng Sun, 2023. "Monolithic FAPbBr3 photoanode for photoelectrochemical water oxidation with low onset-potential and enhanced stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Luigi Vesce & Maurizio Stefanelli & Aldo Di Carlo, 2021. "Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer," Energies, MDPI, vol. 14(19), pages 1-8, September.
    11. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    12. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    13. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:1:d:10.1038_s41560-017-0060-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.