IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39999-w.html
   My bibliography  Save this article

Interconnectedness enhances network resilience of multimodal public transportation systems for Safe-to-Fail urban mobility

Author

Listed:
  • Zizhen Xu

    (City University of Hong Kong)

  • Shauhrat S. Chopra

    (City University of Hong Kong)

Abstract

The growing interconnectedness of urban infrastructure networks presents challenges to their ability to handle unforeseen disruptions, particularly in the context of extreme weather events resulting from climate change. Understanding the resilience of interconnected infrastructure systems is imperative to effectively manage such disruptions. This study investigates the role of interconnectedness in enhancing the resilience of public transportation systems in Hong Kong, a city heavily reliant on public transit. Our results demonstrate that interconnected transportation systems improve resilience by reducing topological vulnerabilities, increasing attack tolerance, and enhancing post-disruption interoperability. Findings also identify the potential to integrate vulnerable systems for greater robustness and highlight the marginal benefits of enhancing intermodal transfer. Strengthening interconnectedness among modes of urban public transit fosters a safe-to-fail system, presenting a distinct resilience-by-design approach. This complements conventional resilience-by-intervention approaches that focus on improving individual systems or introducing entirely new systems.

Suggested Citation

  • Zizhen Xu & Shauhrat S. Chopra, 2023. "Interconnectedness enhances network resilience of multimodal public transportation systems for Safe-to-Fail urban mobility," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39999-w
    DOI: 10.1038/s41467-023-39999-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39999-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39999-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    2. Célian Colon & Stéphane Hallegatte & Julie Rozenberg, 2021. "Criticality analysis of a country’s transport network via an agent-based supply chain model," Nature Sustainability, Nature, vol. 4(3), pages 209-215, March.
    3. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Shenle Pan & Eric Ballot & George Q. Huang & Benoit Montreuil, 2017. "Physical Internet and Interconnected Logistics Services: Research and Applications," Post-Print hal-01482909, HAL.
    5. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    6. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    7. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    8. Thacker, Scott & Pant, Raghav & Hall, Jim W., 2017. "System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 30-41.
    9. Tom McLeod Logan & Terje Aven & Seth David Guikema & Roger Flage, 2022. "Risk science offers an integrated approach to resilience," Nature Sustainability, Nature, vol. 5(9), pages 741-748, September.
    10. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    11. Boyeong Hong & Bartosz J. Bonczak & Arpit Gupta & Constantine E. Kontokosta, 2021. "Measuring inequality in community resilience to natural disasters using large-scale mobility data," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    13. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    14. Ahmadian, Navid & Lim, Gino J. & Cho, Jaeyoung & Bora, Selim, 2020. "A quantitative approach for assessment and improvement of network resilience," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    15. Emerson Mahoney & Maureen Golan & Margaret Kurth & Benjamin D. Trump & Igor Linkov, 2022. "Resilience-by-Design and Resilience-by-Intervention in supply chains for remote and indigenous communities," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    16. Shenle Pan & Eric Ballot & George Q. Huang & Benoit Montreuil, 2017. "Physical Internet and interconnected logistics services: research and applications," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2603-2609, May.
    17. Oriol Artime & Manlio De Domenico, 2021. "Percolation on feature-enriched interconnected systems," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    3. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    4. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Jakšić, Zoran & Janić, Milan, 2020. "Modeling resilience of the ATC (Air Traffic Control) sectors," Journal of Air Transport Management, Elsevier, vol. 89(C).
    6. Xiaoqian Sun & Sebastian Wandelt, 2021. "Robustness of Air Transportation as Complex Networks:Systematic Review of 15 Years of Research and Outlook into the Future," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    7. Kulkarni, Onkar & Dahan, Mathieu & Montreuil, Benoit, 2022. "Resilient Hyperconnected Parcel Delivery Network Design Under Disruption Risks," International Journal of Production Economics, Elsevier, vol. 251(C).
    8. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    10. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    11. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    13. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    14. Liu, Weihua & Long, Shangsong & Wei, Shuang, 2022. "Correlation mechanism between smart technology and smart supply chain innovation performance: A multi-case study from China's companies with Physical Internet," International Journal of Production Economics, Elsevier, vol. 245(C).
    15. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    16. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    17. Shenle Pan & Ray Zhong & Ting Qu, 2019. "Smart product-service systems in interoperable logistics: Design and implementation prospects," Post-Print hal-02316272, HAL.
    18. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    19. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    20. Shenle Pan, 2019. "Opportunities of Product-Service System in Physical Internet," Post-Print hal-02155622, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39999-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.