IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35570-1.html
   My bibliography  Save this article

Amazon windthrow disturbances are likely to increase with storm frequency under global warming

Author

Listed:
  • Yanlei Feng

    (University of California)

  • Robinson I. Negrón-Juárez

    (Lawrence Berkeley National Laboratory)

  • David M. Romps

    (Lawrence Berkeley National Laboratory
    University of California)

  • Jeffrey Q. Chambers

    (University of California
    Lawrence Berkeley National Laboratory)

Abstract

Forest mortality caused by convective storms (windthrow) is a major disturbance in the Amazon. However, the linkage between windthrows at the surface and convective storms in the atmosphere remains unclear. In addition, the current Earth system models (ESMs) lack mechanistic links between convective wind events and tree mortality. Here we find an empirical relationship that maps convective available potential energy, which is well simulated by ESMs, to the spatial pattern of large windthrow events. This relationship builds connections between strong convective storms and forest dynamics in the Amazon. Based on the relationship, our model projects a 51 ± 20% increase in the area favorable to extreme storms, and a 43 ± 17% increase in windthrow density within the Amazon by the end of this century under the high-emission scenario (SSP 585). These results indicate significant changes in tropical forest composition and carbon cycle dynamics under climate change.

Suggested Citation

  • Yanlei Feng & Robinson I. Negrón-Juárez & David M. Romps & Jeffrey Q. Chambers, 2023. "Amazon windthrow disturbances are likely to increase with storm frequency under global warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35570-1
    DOI: 10.1038/s41467-022-35570-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35570-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35570-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adriane Esquivel-Muelbert & Oliver L. Phillips & Roel J. W. Brienen & Sophie Fauset & Martin J. P. Sullivan & Timothy R. Baker & Kuo-Jung Chao & Ted R. Feldpausch & Emanuel Gloor & Niro Higuchi & Jean, 2020. "Tree mode of death and mortality risk factors across Amazon forests," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Izabela Aleixo & Darren Norris & Lia Hemerik & Antenor Barbosa & Eduardo Prata & Flávia Costa & Lourens Poorter, 2019. "Amazonian rainforest tree mortality driven by climate and functional traits," Nature Climate Change, Nature, vol. 9(5), pages 384-388, May.
    3. Luciana V. Gatti & Luana S. Basso & John B. Miller & Manuel Gloor & Lucas Gatti Domingues & Henrique L. G. Cassol & Graciela Tejada & Luiz E. O. C. Aragão & Carlos Nobre & Wouter Peters & Luciano Mara, 2021. "Amazonia as a carbon source linked to deforestation and climate change," Nature, Nature, vol. 595(7867), pages 388-393, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Leblois, 2021. "Mitigating the impact of bad rainy seasons in poor agricultural regions to tackle deforestation," Post-Print hal-03111007, HAL.
    2. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Matheus Henrique Nunes & José Luís Campana Camargo & Grégoire Vincent & Kim Calders & Rafael S. Oliveira & Alfredo Huete & Yhasmin Mendes de Moura & Bruce Nelson & Marielle N. Smith & Scott C. Stark &, 2022. "Forest fragmentation impacts the seasonality of Amazonian evergreen canopies," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Eugenio Arima & Paulo Barreto & Farzad Taheripour & Angel Aguiar, 2021. "Dynamic Amazonia: The EU–Mercosur Trade Agreement and Deforestation," Land, MDPI, vol. 10(11), pages 1-23, November.
    6. Apeti, Ablam Estel & N’Doua, Bossoma Doriane, 2023. "The impact of timber regulations on timber and timber product trade," Ecological Economics, Elsevier, vol. 213(C).
    7. Tianlin Zhai & Linke Wu & Yuanmeng Chen & Mian Faisal Nazir & Mingyuan Chang & Yuanbo Ma & Enxiang Cai & Guanyu Ding & Chenchen Zhao & Ling Li & Longyang Huang, 2022. "Ecological Compensation in the Context of Carbon Neutrality: A Case Involving Service Production-Transmission and Distribution-Service Consumption," Land, MDPI, vol. 11(12), pages 1-18, December.
    8. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Porro, Roberto & Porro, Noemi Sakiara Miyasaka, 2022. "State-led social and environmental policy failure in a Brazilian forest frontier: Sustainable Development Project in Anapu, Pará," Land Use Policy, Elsevier, vol. 114(C).
    10. Lukas Baumbach & Thomas Hickler & Rasoul Yousefpour & Marc Hanewinkel, 2023. "High economic costs of reduced carbon sinks and declining biome stability in Central American forests," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Anthony Burke, 2022. "An architecture for a net zero world: Global climate governance beyond the epoch of failure," Global Policy, London School of Economics and Political Science, vol. 13(S3), pages 24-37, December.
    12. Hamish Clarke & Rachael H. Nolan & Victor Resco Dios & Ross Bradstock & Anne Griebel & Shiva Khanal & Matthias M. Boer, 2022. "Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-29, June.
    14. Celentano, Danielle & Moraes, Miguel & Ferreira, Joice & Nahur, André & Coutinho, Bruno & Rousseau, Guillaume X. & Martins, Marlucia Bonifacio & Vasconcelos, Lívia G.T. Rangel & Rodrigues, Fernanda & , 2022. "Forest restoration to promote a fair post COVID-19 recovery in the Brazilian Amazon," Land Use Policy, Elsevier, vol. 116(C).
    15. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    16. Feng, Jing-Chun & Sun, Liwei & Yan, Jinyue, 2023. "Carbon sequestration via shellfish farming: A potential negative emissions technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    17. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    18. Luca Eufemia & Ana Paula Dias Turetta & Michelle Bonatti & Emmanuel Da Ponte & Stefan Sieber, 2022. "Fires in the Amazon Region: Quick Policy Review," Development Policy Review, Overseas Development Institute, vol. 40(5), September.
    19. Fernandes, Stephannie & Fernandes, Geraldo W. & Fearnside, Philip M., 2023. "Viewpoint: Sovereignty and reversing Brazil’s history of Amazon destruction," Land Use Policy, Elsevier, vol. 133(C).
    20. David B Clark & Antonio Ferraz & Deborah A Clark & James R Kellner & Susan G Letcher & Sassan Saatchi, 2019. "Diversity, distribution and dynamics of large trees across an old-growth lowland tropical rain forest landscape," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35570-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.