IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3672-d1384393.html
   My bibliography  Save this article

Sustainability in Natural Grassland in the Brazilian Pampa Biome: Livestock Production with CO 2 Absorption

Author

Listed:
  • Débora Regina Roberti

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil)

  • Alecsander Mergen

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil)

  • Ricardo Acosta Gotuzzo

    (Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96203-900, RS, Brazil)

  • Gustavo Pujol Veeck

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil)

  • Tiago Bremm

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil)

  • Luciana Marin

    (Departamento de Zootecnia, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil)

  • Fernando Luiz Ferreira de Quadros

    (Departamento de Zootecnia, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
    In memoriam.)

  • Rodrigo Josemar Seminoti Jacques

    (Departamento de Solos, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil)

Abstract

The Brazilian Pampa biome has natural pastures that have been used for centuries for cattle grazing. This is considered a sustainable system because it combines the conservation of natural vegetation and high-quality meat production, protecting the biome from commercial agriculture’s advances. However, whether it is a source or a sink of carbon dioxide (CO 2 ) has yet to be evaluated. Hence, this study aimed to quantify the net ecosystem exchange (NEE) of the CO 2 of a natural pasture of the Pampa biome used for livestock production. The experimental area is located in a subtropical region of southern Brazil, where eddy covariance (EC) measurements were conducted from 2015 to 2021 in a rotational cattle grazing system. The seven months of the warm season (September to March) were characterized as CO 2 absorbers, while the five months of the cold season (April to August) were CO 2 emitters. Throughout the six years and with complete data, the ecosystem was an absorber of atmospheric CO 2 , with an average value of −207.6 g C m −2 year −1 . However, the significant interannual variability in NEE was observed, with cumulative values ranging from −82.0 to −385.3 g C m −2 year −1 . The results suggest the coupling of climatic conditions to pasture management can be the factor that modulated the NEE interannual variability. The cattle raising system on the natural pastures of the Pampa absorbs CO 2 , which is further evidence of its sustainability and need for conservation.

Suggested Citation

  • Débora Regina Roberti & Alecsander Mergen & Ricardo Acosta Gotuzzo & Gustavo Pujol Veeck & Tiago Bremm & Luciana Marin & Fernando Luiz Ferreira de Quadros & Rodrigo Josemar Seminoti Jacques, 2024. "Sustainability in Natural Grassland in the Brazilian Pampa Biome: Livestock Production with CO 2 Absorption," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3672-:d:1384393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossein Azadi & Fatemeh Taheri & Stefan Burkart & Hossein Mahmoudi & Philippe De Maeyer & Frank Witlox, 2021. "Impact of agricultural land conversion on climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3187-3198, March.
    2. Luciana V. Gatti & Luana S. Basso & John B. Miller & Manuel Gloor & Lucas Gatti Domingues & Henrique L. G. Cassol & Graciela Tejada & Luiz E. O. C. Aragão & Carlos Nobre & Wouter Peters & Luciano Mara, 2021. "Amazonia as a carbon source linked to deforestation and climate change," Nature, Nature, vol. 595(7867), pages 388-393, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. World Bank, "undated". "Consolidating the Recovery," World Bank Publications - Reports 37244, The World Bank Group.
    2. Coulibaly, Yacouba, 2025. "The effects of resource-backed loans on deforestation: Evidence from developing countries," World Development, Elsevier, vol. 188(C).
    3. Ablam Estel Apeti & Bossoma Doriane N’doua, 2023. "The impact of timber regulations on timber and timber product trade," Post-Print hal-04262489, HAL.
    4. Sebastian Luckeneder & Victor Maus & Juliana Siqueira-Gay & Tamás Krisztin & Michael Kuhn, 2025. "Forest loss and uncertain economic gains from industrial and garimpo mining in Brazilian municipalities," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Mohsen Khezri, 2025. "Impact of Various Land Cover Transformations on Climate Change: Insights from a Spatial Panel Analysis," Data, MDPI, vol. 10(2), pages 1-21, January.
    6. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    7. Feng, Jing-Chun & Sun, Liwei & Yan, Jinyue, 2023. "Carbon sequestration via shellfish farming: A potential negative emissions technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    9. Loris André & Julio Ramos-Tallada, 2025. "Green Finance and Deforestation Reduction in Brazil: a PVAR Analysis of the Amazon Fund," Working papers 998, Banque de France.
    10. Fernandes, Stephannie & Fernandes, Geraldo W. & Fearnside, Philip M., 2023. "Viewpoint: Sovereignty and reversing Brazil’s history of Amazon destruction," Land Use Policy, Elsevier, vol. 133(C).
    11. Marco A. Franco & Luciana V. Rizzo & Márcio J. Teixeira & Paulo Artaxo & Tasso Azevedo & Jos Lelieveld & Carlos A. Nobre & Christopher Pöhlker & Ulrich Pöschl & Julia Shimbo & Xiyan Xu & Luiz A. T. Ma, 2025. "How climate change and deforestation interact in the transformation of the Amazon rainforest," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Wenli Yang & Langang Feng & Zuogong Wang & Xiangbo Fan, 2023. "Carbon Emissions and National Sustainable Development Goals Coupling Coordination Degree Study from a Global Perspective: Characteristics, Heterogeneity, and Spatial Effects," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    13. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Arthur Fendrich & Yu Feng & Jean-Pierre Wigneron & Jerôme Chave & Arnan Araza & Zheyuan Li & Martin Herold & Jean Ometto & Luiz E. O. C. Aragão & Isabel Martinez Cano & Lei Zhu & Yidi Xu & Philippe Ci, 2025. "Human influence on Amazon’s aboveground carbon dynamics intensified over the last decade," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    15. Yang, Yi & Yuan, Zhuqing & Gao, Haohao, 2024. "Allocating quotas for industrial carbon emissions fairly and efficiently to achieve “peak carbon”: A case of the yellow river basin in China," Energy, Elsevier, vol. 311(C).
    16. Yanlei Feng & Robinson I. Negrón-Juárez & David M. Romps & Jeffrey Q. Chambers, 2023. "Amazon windthrow disturbances are likely to increase with storm frequency under global warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Martin J. P. Sullivan & Oliver L. Phillips & David Galbraith & Everton Almeida & Edmar Almeida Oliveira & Jarcilene Almeida & Esteban Álvarez Dávila & Luciana F. Alves & Ana Andrade & Luiz Aragão & Al, 2025. "Variation in wood density across South American tropical forests," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Armah N. A. Ralph & Quartey Peter & Turkson Ebo Festus & Abbey N. Emmanuel & Mawuenyega M. Butu & Huan‐Niemi Ellen, 2025. "Interlinkages Between Agri‐Food Trade and the SDGs at the Global, Regional and Local Level," Journal of International Development, John Wiley & Sons, Ltd., vol. 37(4), pages 951-977, May.
    20. Diego Hernandez Guzman & Seweryn Zielinski & Adriana Hernandez Guzman & Beliña Annery Herrera Tapias & Omar Ramírez & Celene B. Milanés, 2025. "Greenhouse Gas Emissions from Livestock-Driven Deforestation in the Amazon: A Bibliometric Analysis 2004–2024," Land, MDPI, vol. 14(8), pages 1-29, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3672-:d:1384393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.