IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35147-y.html
   My bibliography  Save this article

Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing

Author

Listed:
  • Cheng Chen

    (Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d’Optique Atmosphérique
    GRASP-SAS, Univ. Lille)

  • Oleg Dubovik

    (Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d’Optique Atmosphérique)

  • Gregory L. Schuster

    (NASA Langley Research Center)

  • Mian Chin

    (NASA Goddard Space Flight Center)

  • Daven K. Henze

    (University of Colorado)

  • Tatyana Lapyonok

    (Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d’Optique Atmosphérique)

  • Zhengqiang Li

    (Chinese Academy of Sciences)

  • Yevgeny Derimian

    (Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d’Optique Atmosphérique)

  • Ying Zhang

    (Chinese Academy of Sciences)

Abstract

Quantitative estimations of atmospheric aerosol absorption are rather uncertain due to the lack of reliable information about the global distribution. Because the information about aerosol properties is commonly provided by single-viewing photometric satellite sensors that are not sensitive to aerosol absorption. Consequently, the uncertainty in aerosol radiative forcing remains one of the largest in the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC AR5 and AR6). Here, we use multi-angular polarimeters (MAP) to provide constraints on emission of absorbing aerosol species and estimate global aerosol absorption optical depth (AAOD) and its climate effect. Our estimate of modern-era mid-visible AAOD is 0.0070 that is higher than IPCC by a factor of 1.3-1.8. The black carbon instantaneous direct radiative forcing (BC DRF) is +0.33 W/m2 [+0.17, +0.54]. The MAP constraint narrows the 95% confidence interval of BC DRF by a factor of 2 and boosts confidence in its spatial distribution.

Suggested Citation

  • Cheng Chen & Oleg Dubovik & Gregory L. Schuster & Mian Chin & Daven K. Henze & Tatyana Lapyonok & Zhengqiang Li & Yevgeny Derimian & Ying Zhang, 2022. "Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35147-y
    DOI: 10.1038/s41467-022-35147-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35147-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35147-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Bellouin & Olivier Boucher & Jim Haywood & M. Shekar Reddy, 2005. "Global estimate of aerosol direct radiative forcing from satellite measurements," Nature, Nature, vol. 438(7071), pages 1138-1141, December.
    2. Yoram J. Kaufman & Didier Tanré & Olivier Boucher, 2002. "A satellite view of aerosols in the climate system," Nature, Nature, vol. 419(6903), pages 215-223, September.
    3. Mark Z. Jacobson, 2001. "Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols," Nature, Nature, vol. 409(6821), pages 695-697, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus, Jan R. & Melenberg, Bertrand & Muris, Chris, 2011. "Global Warming and Local Dimming: The Statistical Evidence," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 452-464.
    2. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    3. Neha Shaw & A. K. Gorai, 2020. "Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 265-279, January.
    4. Xiuyun Min & Jun Wu & Jian Lu & Chunliang Gao, 2019. "Effects of Yak Dung Biomass Black Carbon on the Soil Physicochemical Properties of the Northeastern Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. Tianhao Zhang & Gang Liu & Zhongmin Zhu & Wei Gong & Yuxi Ji & Yusi Huang, 2016. "Real-Time Estimation of Satellite-Derived PM 2.5 Based on a Semi-Physical Geographically Weighted Regression Model," IJERPH, MDPI, vol. 13(10), pages 1-13, September.
    6. Tianhao Zhang & Wei Gong & Wei Wang & Yuxi Ji & Zhongmin Zhu & Yusi Huang, 2016. "Ground Level PM 2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO 2 and Enhanced Vegetation Index (EVI)," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    7. PCS Devara & K Vijayakumar & SVB Rao & CK Jayasankar & SM Sonbawne & BN Holben & DM Giles, 2019. "Study of Aerosols Over Indian Subcontinent During El Nino and La Nina Events: Inferring Land-Air-Sea Interactions," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(5), pages 99-108, January.
    8. Chen, Chen & Zhao, Xuan & Qi, Dandan & Yang, Kaixuan & Xu, Lei & Li, Tianjiao & Ying, Yaoyao & Liu, Dong, 2023. "Sooting transition diagnostics in counter-flow flames of C4 isomer fuels," Energy, Elsevier, vol. 262(PB).
    9. Peng Zhang & Tianzeng Chen & Qingxin Ma & Biwu Chu & Yonghong Wang & Yujing Mu & Yunbo Yu & Hong He, 2022. "Diesel soot photooxidation enhances the heterogeneous formation of H2SO4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    11. Suman Moparthy & Dominique Carrer & Xavier Ceamanos, 2019. "Can We Detect the Brownness or Greenness of the Congo Rainforest Using Satellite-Derived Surface Albedo? A Study on the Role of Aerosol Uncertainties," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    12. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    13. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    14. B. Padmakumari & A. Jaswal & B. Goswami, 2013. "Decrease in evaporation over the Indian monsoon region: implication on regional hydrological cycle," Climatic Change, Springer, vol. 121(4), pages 787-799, December.
    15. Johnson, Eric, 2003. "LPG: a secure, cleaner transport fuel? A policy recommendation for Europe," Energy Policy, Elsevier, vol. 31(15), pages 1573-1577, December.
    16. Daniel Carrión & W. Victoria Lee & Diana Hernández, 2018. "Residual Inequity: Assessing the Unintended Consequences of New York City’s Clean Heat Transition," IJERPH, MDPI, vol. 15(1), pages 1-16, January.
    17. Kunshan Bao & Ji Shen & Guoping Wang & Chuanyu Gao, 2015. "Anthropogenic Black Carbon Emission Increase during the Last 150 Years at Coastal Jiangsu, China," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    18. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    19. Xiankang Xu & Kaifang Shi & Zhongyu Huang & Jingwei Shen, 2023. "What Factors Dominate the Change of PM 2.5 in the World from 2000 to 2019? A Study from Multi-Source Data," IJERPH, MDPI, vol. 20(3), pages 1-28, January.
    20. Mehdi Jadidi & Stevan Kostic & Leonardo Zimmer & Seth B. Dworkin, 2020. "An Artificial Neural Network for the Low-Cost Prediction of Soot Emissions," Energies, MDPI, vol. 13(18), pages 1-27, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35147-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.