IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6821d10.1038_35055518.html
   My bibliography  Save this article

Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols

Author

Listed:
  • Mark Z. Jacobson

    (Stanford University)

Abstract

Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon—soot—that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed1,2,3,4,5,6,7) or incorporated within them (internally mixed1,3,7), or a black-carbon core could be surrounded by a well mixed shell7. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.

Suggested Citation

  • Mark Z. Jacobson, 2001. "Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols," Nature, Nature, vol. 409(6821), pages 695-697, February.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6821:d:10.1038_35055518
    DOI: 10.1038/35055518
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35055518
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35055518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6821:d:10.1038_35055518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.